Integrating transcriptomic, proteomic and pharmacogenomic data to inform individualized therapy in cancers
整合转录组学、蛋白质组学和药物基因组学数据,为癌症个体化治疗提供信息
基本信息
- 批准号:9925076
- 负责人:
- 金额:$ 16.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptedAntineoplastic AgentsAwardBasal cell carcinomaBig DataBig Data MethodsBioinformaticsBiological MarkersCancer BiologyCancer PatientCancer cell lineCell LineClinicClinicalClinical TrialsCodeCommunitiesComputing MethodologiesConsumptionDataData SetDatabasesDiseaseEwings sarcomaExpression ProfilingGene ExpressionGene ProteinsGenomic Data CommonsGoalsIndividualKnowledgeMachine LearningMalignant - descriptorMalignant NeoplasmsMalignant neoplasm of liverMentorsMeta-AnalysisMethodsMolecularMolecular ProfilingMusMutationNon-MalignantNormal tissue morphologyPatientsPatternPharmaceutical PreparationsPharmacogenomicsPrecision Medicine InitiativePrimary carcinoma of the liver cellsProbabilityProteomicsResearchResourcesSamplingScientistSourceSystemTherapeuticTimeTissue SampleTranslatingTreatment outcomeTumor TissueUniversitiesValidationWorkXenograft procedureactionable mutationbasebig-data sciencec-myc Genescancer cellcancer clinical trialcancer genomicscancer therapydata sharingdrug candidatedrug efficacydrug sensitivityefficacy testinggenetic signatureindividual patientindividualized medicinelearning classifiermalignant breast neoplasmmolecular markermouse modelnoveloncotypeoptimal treatmentspersonalized cancer therapypersonalized medicinepre-clinicalpredictive markerprotein expressionresponsestatisticstooltranscriptomicstriple-negative invasive breast carcinomatumor
项目摘要
PROJECT SUMMARY
As a computational biologist, my long-term goal is to develop methods and tools to discover new or better
therapeutics for cancers. In the past few years, I have identified drug-repositioning candidates for a number of
primary cancers using Big Data approaches. These candidates have been validated successfully in preclinical
mouse models. To maximize the utility of Big Data, I plan to translate the findings into therapeutics; therefore, I
propose to develop methods to utilize transcriptomic, proteomic and pharmacogenomic data to inform
individualized therapy in cancers. Current preclinical and clinical approaches including the NCI MATCH trial
select therapies primarily based on actionable mutations, yet patients may have no actionable mutations or
multiple actionable mutations that are hard to prioritize, suggesting the need for other different types of
molecular biomarkers. The recent efforts have enabled the large-scale identification of various types of
molecular biomarkers through correlating drug sensitivity with molecular profiles of pre-treatment cancer cell
lines. Computational methods to match these biomarkers to individual patients to inform therapy in the clinic
are thus in high demand. The objective of this award is therefore to develop computational approaches to
identify therapeutics for individual patients by leveraging large-scale biomarkers identified from cancer cell
lines. Through conducing this research, I expect to expand my knowledge in cancer clinical trials, cancer
genomics, cancer biology, and statistics. To achieve the goal, I have gathered seven renowned experts from
different fields related to Big Data Science as mentors/advisors/collaborators: Primary Mentor Dr. Atul Butte in
translational bioinformatics from UCSF, Co-mentor Dr. Samuel So in cancer biology from Stanford University,
Co-mentor Dr. Mark Segal in statistics from UCSF, Advisor Dr. Andrei Goga in cancer biology from UCSF,
Advisor Dr. Laura Esserman in breast cancer trials from UCSF, Collaborator Dr. John Gordan in liver cancer
trials from UCSF and Collaborator Dr. Xin Chen in cancer biology from UCSF. With the support from my world-
class mentors, advisors and collaborators, this award will prepare me to be a leader in developing big data
methods that are broadly impactful.
项目摘要
作为一名计算生物学家,我的长期目标是开发方法和工具,
癌症的治疗方法。在过去的几年里,我已经确定了一些药物重新定位的候选人,
使用大数据方法的原发性癌症。这些候选药物已在临床前试验中成功验证
小鼠模型。为了最大限度地利用大数据,我计划将研究结果转化为治疗方法;因此,我
建议开发利用转录组学、蛋白质组学和药物基因组学数据的方法,
癌症的个体化治疗目前的临床前和临床方法,包括NCI MATCH试验
主要基于可操作的突变选择疗法,但患者可能没有可操作的突变,或
多个可操作的突变,很难优先考虑,这表明需要其他不同类型的
分子生物标志物最近的努力使得能够大规模查明各种类型的
通过将药物敏感性与治疗前癌细胞的分子谱相关联的分子生物标志物
线将这些生物标志物与个体患者相匹配的计算方法,以告知临床治疗
因此需求量很大。因此,该奖项的目标是开发计算方法,
通过利用从癌细胞中鉴定大规模生物标志物来鉴定用于个体患者的治疗剂
线通过进行这项研究,我希望扩大我在癌症临床试验方面的知识,
基因组学癌症生物学和统计学为了实现这一目标,我召集了七位来自
作为导师/顾问/合作者的大数据科学相关的不同领域:主要导师Atul Butte博士
来自加州大学旧金山分校的翻译生物信息学,来自斯坦福大学的癌症生物学联合导师Samuel So博士,
加州大学旧金山分校统计学的共同导师马克·西格尔博士,加州大学旧金山分校癌症生物学的顾问安德烈·戈加博士,
UCSF乳腺癌试验顾问Laura Esserman博士,肝癌合作者John Gordan博士
来自加州大学旧金山分校的癌症生物学合作者Xin Chen博士。在我的世界的支持下-
类导师,顾问和合作者,这个奖项将准备我是一个领导者在开发大数据
具有广泛影响力的方法。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
AICM: A Genuine Framework for Correcting Inconsistency Between Large Pharmacogenomics Datasets.
AICM:纠正大型药物基因组数据集之间不一致的真正框架。
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Hu,ZhiyueTom;Ye,Yuting;Newbury,PatrickA;Huang,Haiyan;Chen,Bin
- 通讯作者:Chen,Bin
OCTAD: an open workspace for virtually screening therapeutics targeting precise cancer patient groups using gene expression features.
- DOI:10.1038/s41596-020-00430-z
- 发表时间:2021-03
- 期刊:
- 影响因子:14.8
- 作者:Zeng B;Glicksberg BS;Newbury P;Chekalin E;Xing J;Liu K;Wen A;Chow C;Chen B
- 通讯作者:Chen B
Deciphering COVID-19 host transcriptomic complexity and variations for therapeutic discovery against new variants.
- DOI:10.1016/j.isci.2022.105068
- 发表时间:2022-10-21
- 期刊:
- 影响因子:5.8
- 作者:Xing, Jing;Shankar, Rama;Ko, Meehyun;Zhang, Keke;Zhang, Sulin;Drelich, Aleksandra;Paithankar, Shreya;Chekalin, Eugene;Chua, Mei-Sze;Rajasekaran, Surender;Tseng, Chien-Te Kent;Zheng, Mingyue;Kim, Seungtaek;Chen, Bin
- 通讯作者:Chen, Bin
Selecting precise reference normal tissue samples for cancer research using a deep learning approach.
使用深度学习方法为癌症研究选择精确的参考正常组织样本。
- DOI:10.1186/s12920-018-0463-6
- 发表时间:2019
- 期刊:
- 影响因子:2.7
- 作者:Zeng,WilliamZD;Glicksberg,BenjaminS;Li,Yangyan;Chen,Bin
- 通讯作者:Chen,Bin
Published Anti-SARS-CoV-2 In Vitro Hits Share Common Mechanisms of Action that Synergize with Antivirals.
已发表的抗 SARS-CoV-2 体外热门药物具有与抗病毒药物协同作用的共同作用机制。
- DOI:10.1101/2021.03.04.433931
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Xing,Jing;Paithankar,Shreya;Liu,Ke;Uhl,Katie;Li,Xiaopeng;Ko,Meehyun;Kim,Seungtaek;Haskins,Jeremy;Chen,Bin
- 通讯作者:Chen,Bin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bin Chen其他文献
Bin Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bin Chen', 18)}}的其他基金
virtual compound screening using gene expression
使用基因表达进行虚拟化合物筛选
- 批准号:
10418186 - 财政年份:2022
- 资助金额:
$ 16.91万 - 项目类别:
virtual compound screening using gene expression
使用基因表达进行虚拟化合物筛选
- 批准号:
10673837 - 财政年份:2022
- 资助金额:
$ 16.91万 - 项目类别:
A postdoctoral training program for impactful careers in stem cell biology
干细胞生物学领域有影响力的职业博士后培训计划
- 批准号:
10592329 - 财政年份:2022
- 资助金额:
$ 16.91万 - 项目类别:
Drug biomarker resources for precise translational research
用于精准转化研究的药物生物标志物资源
- 批准号:
10056488 - 财政年份:2020
- 资助金额:
$ 16.91万 - 项目类别:
Repurpose open data to discover therapeutics for understudied diseases
重新利用开放数据来发现尚未研究的疾病的治疗方法
- 批准号:
10461787 - 财政年份:2019
- 资助金额:
$ 16.91万 - 项目类别:
Repurpose open data to discover therapeutics for understudied diseases
重新利用开放数据来发现尚未研究的疾病的治疗方法
- 批准号:
10704561 - 财政年份:2019
- 资助金额:
$ 16.91万 - 项目类别:
Repurpose open data to discover therapeutics for understudied diseases
重新利用开放数据来发现尚未研究的疾病的治疗方法
- 批准号:
10669357 - 财政年份:2019
- 资助金额:
$ 16.91万 - 项目类别:
Repurpose open data to discover therapeutics for understudied diseases
重新利用开放数据来发现尚未研究的疾病的治疗方法
- 批准号:
10713005 - 财政年份:2019
- 资助金额:
$ 16.91万 - 项目类别:
Repurpose open data to discover therapeutics for understudied diseases
重新利用开放数据来发现尚未研究的疾病的治疗方法
- 批准号:
10231115 - 财政年份:2019
- 资助金额:
$ 16.91万 - 项目类别:
相似海外基金
How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
- 批准号:
2315783 - 财政年份:2023
- 资助金额:
$ 16.91万 - 项目类别:
Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
- 批准号:
2719534 - 财政年份:2022
- 资助金额:
$ 16.91万 - 项目类别:
Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
- 批准号:
20K01113 - 财政年份:2020
- 资助金额:
$ 16.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633211 - 财政年份:2020
- 资助金额:
$ 16.91万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2436895 - 财政年份:2020
- 资助金额:
$ 16.91万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633207 - 财政年份:2020
- 资助金额:
$ 16.91万 - 项目类别:
Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
- 批准号:
19K01745 - 财政年份:2019
- 资助金额:
$ 16.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
- 批准号:
426559561 - 财政年份:2019
- 资助金额:
$ 16.91万 - 项目类别:
Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
- 批准号:
2236701 - 财政年份:2019
- 资助金额:
$ 16.91万 - 项目类别:
Studentship
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
- 批准号:
415543446 - 财政年份:2019
- 资助金额:
$ 16.91万 - 项目类别:
Research Fellowships