Double strand break repair maelstrom: causes, mechanisms and genome destabilizing consequences
双链断裂修复漩涡:原因、机制和基因组不稳定后果
基本信息
- 批准号:10406966
- 负责人:
- 金额:$ 37.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsAreaAutomobile DrivingCell DeathCell SurvivalCellsChromosomal RearrangementComplexDNADNA Double Strand BreakDNA RepairDNA Repair PathwayDNA Sequence RearrangementDNA biosynthesisDNA lesionDangerousnessDevelopmentDiseaseDouble Strand Break RepairEukaryotaEventExperimental DesignsGeneticGenomeGenome StabilityGenomic InstabilityGenomicsGoalsHO nucleaseHumanHuman GenomeIn VitroJointsKineticsKnowledgeLesionMalignant NeoplasmsMediatingModelingMolecularMutationNeurologicOrganismPathway interactionsPatternPlant RootsPositioning AttributeProcessProteinsRegulationResearchRoleSingle-Stranded DNASiteStructureSyndromeSystemTherapeutic InterventionWorkYeastsgenetic approachgenome databasehigh riskhuman diseaseimprovedin vivointerestprogramsrepairedsoftware development
项目摘要
Maintaining genetic stability is of paramount importance for the survival of cells and organisms. Double-strand
DNA breaks (DSBs) are the most lethal DNA lesion threatening genomic stability, and cells have evolved a
variety of mechanisms for their repair. While some of the repair mechanisms are accurate, others are “risky”
and can further destabilize the genome, leading to cancer and other diseases in humans. The molecular
events that draw the intermediates of otherwise accurate repair pathways into a “maelstrom” of destabilizing
DNA repair mechanisms, where these intermediates are then processed through risky DNA repair pathways,
remain unexplored. The goal of our research is to understand how DSB repair is channeled into the deleterious
repair pathways, with particular emphasis on three DSB repair phenomena: 1) break-induced replication (BIR),
an unusual type of long-tract repair DNA synthesis that promotes bursts of genetic instabilities; 2)
microhomology-mediated BIR (MMBIR), a replicative pathway involving multiple template switching events at
positions of microhomologies that yields complex genomic rearrangements; and 3) the transformation of long
single-strand DNA intermediates of DSB repair into “toxic” joint molecules promoting cell death. As a starting
point, we are using our dependable and powerful system in yeast, where a single DSB is initiated by a site-
specific HO endonuclease; we have demonstrated that all three of the repair events of interest can be used to
repair the lesion in this system. The knowledge obtained using this system – the repair mechanisms,
intermediates, participating proteins, and mutation patterns – is used to inform the experimental design of
studies that will evaluate these pathways in other yeast and mammalian systems. Conceptually, the long-term
goals are the same across projects and involve three primary areas of inquiry. First, using sensitive genetic
approaches, proteins and DNA motifs whose presence affect the funneling of the repair intermediates into the
“maelstrom” of destabilizing repair mechanisms will be identified. Second, a combination of in vivo and in vitro
approaches will be used to model and investigate the cell's decision points to understand the circumstances
(structures, kinetics, participating proteins, etc.) that draw intermediates into high-risk and/or toxic repair
pathways. Third, the patterns of mutations and chromosomal rearrangements that result from the deleterious
repair pathways will be evaluated, and computational approaches will be used to apply these findings to
human genome databases. To this end, MMBIRFinder, new software developed from previous research, will
be used to detect complex genetic changes that cannot be found by currently available algorithms. Overall, this
research program will bring improved clarity regarding the mechanisms of DNA repair intermediate processing,
which will uncover factors that influence the regulation of dangerous repair pathways and result in
destabilization of the genome in eukaryotes.
保持遗传稳定性对细胞和生物体的生存至关重要。双链
DNA断裂是威胁基因组稳定性的最致命的DNA损伤,细胞已经进化出一种
它们的修复机制多种多样。虽然有些修复机制是准确的,但另一些机制是“危险的”
并可能进一步破坏基因组的稳定,导致人类患癌症和其他疾病。分子
将原本准确的修复途径的中间环节拖入破坏稳定的“漩涡”的事件
DNA修复机制,这些中间产物然后通过危险的DNA修复途径进行处理,
仍未被开发。我们研究的目标是了解DSB修复是如何引导到有害的
修复途径,特别强调三种DSB修复现象:1)断裂诱导复制(BIR),
一种不同寻常的长链修复DNA合成,促进了遗传不稳定性的爆发;2)
微同源介导的BIR(MMBIR),一种涉及多个模板切换事件的复制途径,位于
产生复杂基因组重排的微同源的位置;以及3)Long
DSB的单链DNA中间体修复成“有毒”的联合分子,促进细胞死亡。作为一个开始
点,我们正在酵母中使用我们可靠和强大的系统,其中单个DSB由一个站点-
特异的HO内切酶;我们已经证明了所有三个感兴趣的修复事件都可以用于
修复这个系统中的损伤。使用这个系统获得的知识--修复机制,
中间体、参与蛋白质和突变模式-用于指导实验设计
将在其他酵母和哺乳动物系统中评估这些途径的研究。从概念上讲,长期
各个项目的目标是相同的,并涉及三个主要的调查领域。首先,使用敏感基因
途径、蛋白质和DNA基序的存在影响修复中间产物进入
破坏稳定的修复机制的“漩涡”将被确定。第二,体内和体外的结合
将使用方法对单元的决策点进行建模和调查,以了解情况
(结构、动力学、参与蛋白质等)将中间体吸引到高风险和/或有毒修复中
小路。第三,由有害物质引起的突变和染色体重排的模式
将对修复路径进行评估,并使用计算方法将这些发现应用于
人类基因组数据库。为此,根据以前的研究开发的新软件MMBIRFinder将
用于检测当前可用的算法无法发现的复杂遗传变化。总体而言,这
研究计划将提高DNA修复中间处理机制的清晰度,
这将揭示影响危险修复路径调节的因素,并导致
真核生物基因组的不稳定。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anna L Malkova其他文献
Anna L Malkova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anna L Malkova', 18)}}的其他基金
The role of human RAD52 protein in genome stability
人类 RAD52 蛋白在基因组稳定性中的作用
- 批准号:
9904590 - 财政年份:2019
- 资助金额:
$ 37.78万 - 项目类别:
The role of human RAD52 protein in genome stability
人类 RAD52 蛋白在基因组稳定性中的作用
- 批准号:
9763870 - 财政年份:2019
- 资助金额:
$ 37.78万 - 项目类别:
The role of human RAD52 protein in genome stability
人类 RAD52 蛋白在基因组稳定性中的作用
- 批准号:
10361559 - 财政年份:2019
- 资助金额:
$ 37.78万 - 项目类别:
The role of human RAD52 protein in genome stability
人类 RAD52 蛋白在基因组稳定性中的作用
- 批准号:
10582621 - 财政年份:2019
- 资助金额:
$ 37.78万 - 项目类别:
Double strand break repair maelstrom: causes, mechanisms and genome destabilizing consequences
双链断裂修复漩涡:原因、机制和基因组不稳定后果
- 批准号:
10387418 - 财政年份:2018
- 资助金额:
$ 37.78万 - 项目类别:
Double strand break repair maelstrom: causes, mechanisms and genome destabilizing consequences
双链断裂修复漩涡:原因、机制和基因组不稳定后果
- 批准号:
10623641 - 财政年份:2018
- 资助金额:
$ 37.78万 - 项目类别:
Double strand break repair maelstrom: causes, mechanisms and genome destabilizing consequences
双链断裂修复漩涡:原因、机制和基因组不稳定后果
- 批准号:
10159282 - 财政年份:2018
- 资助金额:
$ 37.78万 - 项目类别:
Amplification of Risk Caused by Mis-Routing of DNA Double-Strand Break Repair
DNA 双链断裂修复路径错误导致的风险放大
- 批准号:
8063644 - 财政年份:2008
- 资助金额:
$ 37.78万 - 项目类别:
Amplification of risk resulting from mis-routing of double-strand break repair
双链断裂修复路线错误导致风险放大
- 批准号:
8758960 - 财政年份:2008
- 资助金额:
$ 37.78万 - 项目类别:
Amplification of Risk Caused by Mis-Routing of DNA Double-Strand Break Repair
DNA 双链断裂修复错误路由导致的风险放大
- 批准号:
8274795 - 财政年份:2008
- 资助金额:
$ 37.78万 - 项目类别:
相似海外基金
Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
- 批准号:
LP170100311 - 财政年份:2018
- 资助金额:
$ 37.78万 - 项目类别:
Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
- 批准号:
1736326 - 财政年份:2017
- 资助金额:
$ 37.78万 - 项目类别:
Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2017
- 资助金额:
$ 37.78万 - 项目类别:
Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
- 批准号:
375876714 - 财政年份:2017
- 资助金额:
$ 37.78万 - 项目类别:
Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2016
- 资助金额:
$ 37.78万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2015
- 资助金额:
$ 37.78万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2014
- 资助金额:
$ 37.78万 - 项目类别:
Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
- 批准号:
8689532 - 财政年份:2014
- 资助金额:
$ 37.78万 - 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
- 批准号:
1329780 - 财政年份:2013
- 资助金额:
$ 37.78万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
- 批准号:
1329745 - 财政年份:2013
- 资助金额:
$ 37.78万 - 项目类别:
Standard Grant