Sepsis online: learning while doing to understand biology and treatment

脓毒症在线:边做边学,了解生物学和治疗

基本信息

项目摘要

PROJECT SUMMARY / ABSTRACT More than 1 million Americans are hospitalized with sepsis each year, and nearly one in five don’t survive. Most efforts to reduce sepsis deaths begin with the premise that patients are largely similar, and that ether moving treatment earlier or targeting therapeutics to a single mechanism will improve outcomes. In prior work funded by a NIGMS R35 award, we derived sepsis endotypes using a suite of machine learning methods inside the electronic health records (EHR) in a large integrated health system. These endotypes differed in biology, outcomes, and treatment response, and were reproduced in thousands of patients. But how will they lead to precision care? In this Renewal, we will leverage our clinical translational laboratory and remnant blood collection to better understand the biology of sepsis endotypes and explore new domains related to pathogen, microbiome, and molecular mechanisms. We will use Bayesian causal networks and reinforcement learning to optimize treatment policies over endotypes in more than 10 million EHR encounters. Finally, we will move learning online and embed endotypes inside the EHR at the point-of-care. These steps will take the science of sepsis endotypes and inform clinical decisions made under time pressure and uncertainty. By testing endotype treatment policies at the “live-edge”, we will strengthen causal inference, mechanistic insight, and learn while doing. My program will be supervised by external advisory boards with expertise in machine learning, inflammation, immunology, computational and systems biology, causal methods, artificial intelligence, and health information technology. This work will further develop my clinical-translational laboratory and cross-cutting mentorship of junior scientists.
项目总结/摘要 每年有超过100万美国人因败血症住院,近1/ 五个人不能活下来大多数减少败血症死亡的努力开始的前提是, 患者在很大程度上是相似的,乙醚移动治疗早期或靶向 单一机制的治疗将改善结果。在以前的工作中, NIGMS R35奖,我们使用一套机器学习来推导脓毒症内型 大型综合卫生系统中电子健康记录(EHR)内部的方法。 这些内型在生物学、结果和治疗反应方面不同, 在成千上万的患者中重现。但是,它们将如何实现精准护理?在这 更新,我们将利用我们的临床转化实验室和残余血液 收集,以更好地了解脓毒症内源性的生物学,并探索新的 与病原体、微生物组和分子机制相关的领域。我们将使用 贝叶斯因果网络和强化学习优化治疗策略, 超过1000万次EHR遭遇中的内型。最后,我们将把学习搬到网上 并在护理点将内型嵌入EHR中。这些步骤将使 脓毒症内型科学,并在时间压力下做出临床决策, 不确定性通过在“活边”测试内型治疗政策,我们将加强 因果推理,机械洞察力,边做边学。我的计划将是 由外部顾问委员会监督,他们在机器学习,炎症, 免疫学,计算和系统生物学,因果方法,人工智能, 和健康信息技术。这项工作将进一步发展我的临床翻译 实验室和跨领域指导初级科学家。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Warren Seymour其他文献

Christopher Warren Seymour的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Warren Seymour', 18)}}的其他基金

REMISE study: REMnant biospecimen Investigation in SEpsis
REMISE 研究:SEpsis 中的 REMnant 生物样本研究
  • 批准号:
    10544794
  • 财政年份:
    2022
  • 资助金额:
    $ 47.28万
  • 项目类别:
REMISE study: REMnant biospecimen Investigation in SEpsis
REMISE 研究:SEpsis 中的 REMnant 生物样本研究
  • 批准号:
    10352753
  • 财政年份:
    2022
  • 资助金额:
    $ 47.28万
  • 项目类别:
Sepsis endotyping using clinical and biological data
使用临床和生物学数据进行脓毒症内分型
  • 批准号:
    9765334
  • 财政年份:
    2016
  • 资助金额:
    $ 47.28万
  • 项目类别:
Sepsis online: learning while doing to understand biology and treatment
脓毒症在线:边做边学,了解生物学和治疗
  • 批准号:
    10636964
  • 财政年份:
    2016
  • 资助金额:
    $ 47.28万
  • 项目类别:
Sepsis endotyping using clinical and biological data
使用临床和生物学数据进行脓毒症内分型
  • 批准号:
    9140876
  • 财政年份:
    2016
  • 资助金额:
    $ 47.28万
  • 项目类别:
Pre-hospital identification of high-risk sepsis
高危脓毒症的院前识别
  • 批准号:
    8601156
  • 财政年份:
    2013
  • 资助金额:
    $ 47.28万
  • 项目类别:
Pre-hospital identification of high-risk sepsis
高危脓毒症的院前识别
  • 批准号:
    8424368
  • 财政年份:
    2013
  • 资助金额:
    $ 47.28万
  • 项目类别:

相似海外基金

TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
  • 批准号:
    10093095
  • 财政年份:
    2024
  • 资助金额:
    $ 47.28万
  • 项目类别:
    Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
  • 批准号:
    10106704
  • 财政年份:
    2024
  • 资助金额:
    $ 47.28万
  • 项目类别:
    EU-Funded
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
  • 批准号:
    DP240100602
  • 财政年份:
    2024
  • 资助金额:
    $ 47.28万
  • 项目类别:
    Discovery Projects
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
  • 批准号:
    MR/Y009657/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.28万
  • 项目类别:
    Fellowship
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:Cyber​​AI:利用人工智能实现智能系统的网络安全解决方案
  • 批准号:
    2349104
  • 财政年份:
    2024
  • 资助金额:
    $ 47.28万
  • 项目类别:
    Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
  • 批准号:
    2342384
  • 财政年份:
    2024
  • 资助金额:
    $ 47.28万
  • 项目类别:
    Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343607
  • 财政年份:
    2024
  • 资助金额:
    $ 47.28万
  • 项目类别:
    Standard Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
  • 批准号:
    2409130
  • 财政年份:
    2024
  • 资助金额:
    $ 47.28万
  • 项目类别:
    Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
  • 批准号:
    2414141
  • 财政年份:
    2024
  • 资助金额:
    $ 47.28万
  • 项目类别:
    Standard Grant
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
  • 批准号:
    23K22068
  • 财政年份:
    2024
  • 资助金额:
    $ 47.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了