Sepsis online: learning while doing to understand biology and treatment

脓毒症在线:边做边学,了解生物学和治疗

基本信息

项目摘要

PROJECT SUMMARY / ABSTRACT More than 1 million Americans are hospitalized with sepsis each year, and nearly one in five don’t survive. Most efforts to reduce sepsis deaths begin with the premise that patients are largely similar, and that ether moving treatment earlier or targeting therapeutics to a single mechanism will improve outcomes. In prior work funded by a NIGMS R35 award, we derived sepsis endotypes using a suite of machine learning methods inside the electronic health records (EHR) in a large integrated health system. These endotypes differed in biology, outcomes, and treatment response, and were reproduced in thousands of patients. But how will they lead to precision care? In this Renewal, we will leverage our clinical translational laboratory and remnant blood collection to better understand the biology of sepsis endotypes and explore new domains related to pathogen, microbiome, and molecular mechanisms. We will use Bayesian causal networks and reinforcement learning to optimize treatment policies over endotypes in more than 10 million EHR encounters. Finally, we will move learning online and embed endotypes inside the EHR at the point-of-care. These steps will take the science of sepsis endotypes and inform clinical decisions made under time pressure and uncertainty. By testing endotype treatment policies at the “live-edge”, we will strengthen causal inference, mechanistic insight, and learn while doing. My program will be supervised by external advisory boards with expertise in machine learning, inflammation, immunology, computational and systems biology, causal methods, artificial intelligence, and health information technology. This work will further develop my clinical-translational laboratory and cross-cutting mentorship of junior scientists.
项目摘要/摘要

项目成果

期刊论文数量(39)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Launching a comparative effectiveness adaptive platform trial of monoclonal antibodies for COVID-19 in 21 days.
  • DOI:
    10.1016/j.cct.2021.106652
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    McCreary EK;Bariola JR;Minnier T;Wadas RJ;Shovel JA;Albin D;Marroquin OC;Schmidhofer M;Wisniewski MK;Nace DA;Sullivan C;Axe M;Meyers R;Khadem T;Garrard W;Collins K;Wells A;Bart RD;Linstrum K;Montgomery SK;Haidar G;Snyder GM;McVerry BJ;Seymour CW;Yealy DM;Huang DT;Angus DC
  • 通讯作者:
    Angus DC
Arguing for Adaptive Clinical Trials in Sepsis.
  • DOI:
    10.3389/fimmu.2018.01502
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Talisa VB;Yende S;Seymour CW;Angus DC
  • 通讯作者:
    Angus DC
Hydrocortisone, Vitamin C, and Thiamine for Treatment of Sepsis: Making Evidence Matter.
氢化可的松、维生素 C 和硫胺素治疗脓毒症:让证据发挥作用。
  • DOI:
    10.1001/jama.2020.26029
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Walter,KristinL;Seymour,ChristopherW
  • 通讯作者:
    Seymour,ChristopherW
Characterizing systematic challenges in sample size determination for sepsis trials.
描述脓毒症试验样本量确定中的系统挑战。
  • DOI:
    10.1007/s00134-022-06691-4
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    38.9
  • 作者:
    Tran,Alexandre;Fernando,ShannonM;Rochwerg,Bram;Seymour,ChristopherW;Cook,DeborahJ
  • 通讯作者:
    Cook,DeborahJ
Lopinavir-ritonavir and hydroxychloroquine for critically ill patients with COVID-19: REMAP-CAP randomized controlled trial.
  • DOI:
    10.1007/s00134-021-06448-5
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    38.9
  • 作者:
    Arabi YM;Gordon AC;Derde LPG;Nichol AD;Murthy S;Beidh FA;Annane D;Swaidan LA;Beane A;Beasley R;Berry LR;Bhimani Z;Bonten MJM;Bradbury CA;Brunkhorst FM;Buxton M;Buzgau A;Cheng A;De Jong M;Detry MA;Duffy EJ;Estcourt LJ;Fitzgerald M;Fowler R;Girard TD;Goligher EC;Goossens H;Haniffa R;Higgins AM;Hills TE;Horvat CM;Huang DT;King AJ;Lamontagne F;Lawler PR;Lewis R;Linstrum K;Litton E;Lorenzi E;Malakouti S;McAuley DF;McGlothlin A;Mcguinness S;McVerry BJ;Montgomery SK;Morpeth SC;Mouncey PR;Orr K;Parke R;Parker JC;Patanwala AE;Rowan KM;Santos MS;Saunders CT;Seymour CW;Shankar-Hari M;Tong SYC;Turgeon AF;Turner AM;Van de Veerdonk FL;Zarychanski R;Green C;Berry S;Marshall JC;McArthur C;Angus DC;Webb SA;REMAP-CAP Investigators
  • 通讯作者:
    REMAP-CAP Investigators
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Warren Seymour其他文献

Christopher Warren Seymour的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Warren Seymour', 18)}}的其他基金

REMISE study: REMnant biospecimen Investigation in SEpsis
REMISE 研究:SEpsis 中的 REMnant 生物样本研究
  • 批准号:
    10544794
  • 财政年份:
    2022
  • 资助金额:
    $ 47.34万
  • 项目类别:
REMISE study: REMnant biospecimen Investigation in SEpsis
REMISE 研究:SEpsis 中的 REMnant 生物样本研究
  • 批准号:
    10352753
  • 财政年份:
    2022
  • 资助金额:
    $ 47.34万
  • 项目类别:
Sepsis endotyping using clinical and biological data
使用临床和生物学数据进行脓毒症内分型
  • 批准号:
    9765334
  • 财政年份:
    2016
  • 资助金额:
    $ 47.34万
  • 项目类别:
Sepsis online: learning while doing to understand biology and treatment
脓毒症在线:边做边学,了解生物学和治疗
  • 批准号:
    10406975
  • 财政年份:
    2016
  • 资助金额:
    $ 47.34万
  • 项目类别:
Sepsis endotyping using clinical and biological data
使用临床和生物学数据进行脓毒症内分型
  • 批准号:
    9140876
  • 财政年份:
    2016
  • 资助金额:
    $ 47.34万
  • 项目类别:
Pre-hospital identification of high-risk sepsis
高危脓毒症的院前识别
  • 批准号:
    8601156
  • 财政年份:
    2013
  • 资助金额:
    $ 47.34万
  • 项目类别:
Pre-hospital identification of high-risk sepsis
高危脓毒症的院前识别
  • 批准号:
    8424368
  • 财政年份:
    2013
  • 资助金额:
    $ 47.34万
  • 项目类别:

相似海外基金

I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
  • 批准号:
    2409130
  • 财政年份:
    2024
  • 资助金额:
    $ 47.34万
  • 项目类别:
    Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
  • 批准号:
    2414141
  • 财政年份:
    2024
  • 资助金额:
    $ 47.34万
  • 项目类别:
    Standard Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:Cyber​​AI:利用人工智能实现智能系统的网络安全解决方案
  • 批准号:
    2349104
  • 财政年份:
    2024
  • 资助金额:
    $ 47.34万
  • 项目类别:
    Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
  • 批准号:
    2342384
  • 财政年份:
    2024
  • 资助金额:
    $ 47.34万
  • 项目类别:
    Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343607
  • 财政年份:
    2024
  • 资助金额:
    $ 47.34万
  • 项目类别:
    Standard Grant
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
  • 批准号:
    DP240100602
  • 财政年份:
    2024
  • 资助金额:
    $ 47.34万
  • 项目类别:
    Discovery Projects
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
  • 批准号:
    23K22068
  • 财政年份:
    2024
  • 资助金额:
    $ 47.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
  • 批准号:
    10093095
  • 财政年份:
    2024
  • 资助金额:
    $ 47.34万
  • 项目类别:
    Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
  • 批准号:
    10106704
  • 财政年份:
    2024
  • 资助金额:
    $ 47.34万
  • 项目类别:
    EU-Funded
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
  • 批准号:
    MR/Y009657/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.34万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了