Investigating the structure and function of the human centromere and kinetochore
研究人类着丝粒和着丝粒的结构和功能
基本信息
- 批准号:10229203
- 负责人:
- 金额:$ 5.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:Antineoplastic AgentsAreaAuxinsBindingBiological AssayBiologyCell CycleCell Cycle StageCell DeathCell divisionCellsCellular biologyCentromereChromatinChromosome SegregationChromosome abnormalityChromosomesComplexCryo-electron tomographyDefectDepositionDevelopmentDiseaseElementsEmerging TechnologiesEpigenetic ProcessFoundationsG1 PhaseGenerationsGenomicsHealthHistone H3HistonesHumanHydration statusIn SituIn VitroInflammatory ResponseInfrastructureInterphaseInterphase CellKinetochoresMaintenanceMalignant NeoplasmsMapsMediatingMetaphaseMethodsMicrotubulesMitosisMitotic spindleModelingMolecular MachinesMutagenesisN-terminalNatureNucleosomesPennsylvaniaProcessProteinsResearchRoleSmall Interfering RNAStructural ModelsStructureTestingUncertaintyUniversitiesVariantWeight-Bearing stateWorkcancer cellcentromere protein Acentromere protein Cdesignexperimental studygene productgenetic informationgenomic locusin vivoinsightprotein complexreconstitutionsegregationstoichiometrytumortumor progression
项目摘要
Project Summary
Accurate segregation of chromosomes during cell division is one of the most fundamental requirements in
biology. Without proper chromosomal segregation, genetic information cannot be faithfully transmitted across
cell and organismal generations, leading to severe consequences including cell death, developmental defects,
or progression of cancer. Furthermore, improper chromosome segregation in cancer cells has been shown to
lead to anti-tumor inflammatory responses. Central to the process of chromosome segregation is the centromere,
the chromosomal locus at which spindle microtubules bind. The centromere is defined epigenetically by the
presence of nucleosomes containing the histone variant CENP-A. Centromeric chromatin serves as the
foundation of the kinetochore, a large protein complex which assembles on CENP-A nucleosomes and mediates
microtubule binding. Research into the centromere is necessary to better understand the processes that underlie
chromosome segregation in both health and disease, but our understanding of the human centromere remains
largely incomplete. This proposal aims to answer fundamental questions about the structure and function of the
centromere and its associated proteins. Recent advances in reconstitution of large centromeric protein
complexes have increased our understanding of the structure of the human kinetochore, but reconstituted
complexes can only approximate in vivo structures, and currently there are multiple competing models for the
structure and organization of the centromere and kinetochore. The emerging technology of cryo-electron
tomography (cryo-ET) provides the opportunity to interrogate the structure of the centromere and kinetochore in
their native context within vitreous hydrated cells. To this end, in Aim 1 cryo-ET will be used to obtain the first in
situ structures of the human centromere and kinetochore in the interphase and mitosis stages of the cell cycle.
The second focus of this proposal is to elucidate the interactions among centromeric proteins that are required
for the essential functions of the centromere, including formation of microtubule attachments and maintenance
of centromeric identity. Two kinetochore proteins, Ndc80 and CENP-Q, have both been shown to contribute to
microtubule binding in vitro and in vivo, but their respective roles in microtubule binding in vivo have not been
fully characterized. Multiple proteins within the constitutive centromere-associated network (CCAN) have
similarly been shown to contribute to maintenance and deposition of CENP-A at the centromere, but the CCAN
contains multiple interconnected subcomplexes whose contributions have never been systematically tested. In
Aim 2 mutagenesis of the respective endogenous gene loci (and rapid depletion of the respective wild type gene
products) will be used to elucidate in vivo and with temporal accuracy the interactions that underlie spindle
attachment and maintenance of centromeric identity. These experiments will provide important insights into the
structure and function of the human centromere and kinetochore which are essential for proper chromosome
segregation and genomic fidelity across generations.
项目摘要
在细胞分裂过程中染色体的精确分离是细胞分裂的最基本要求之一。
生物学如果没有适当的染色体分离,遗传信息就不能忠实地传递到不同的染色体上。
细胞和生物体的世代,导致严重的后果,包括细胞死亡,发育缺陷,
或癌症的进展。此外,癌细胞中染色体分离不当,
导致抗肿瘤炎症反应。染色体分离过程的中心是着丝粒,
纺锤体微管结合的染色体位点。着丝粒在表观遗传学上被定义为
存在含有组蛋白变体CENP-A的核小体。着丝粒染色质作为
动粒的基础,一种在CENP-A核小体上组装并介导
微管结合对着丝粒的研究对于更好地理解
染色体分离在健康和疾病,但我们对人类着丝粒的理解仍然存在
基本上不完整。该提案旨在回答有关结构和功能的基本问题,
着丝粒及其相关蛋白。大着丝粒蛋白重组的研究进展
复合物增加了我们对人类动粒结构的理解,但重建了
复合物只能近似体内结构,目前有多种竞争模型,
着丝粒和动粒的结构和组织。低温电子新兴技术
断层扫描(cryo-ET)提供了询问着丝粒和动粒结构的机会,
它们在玻璃体水合细胞内的原生环境。为此,在目标1中,将使用冷冻ET来获得第一个
在细胞周期的间期和有丝分裂阶段,人类着丝粒和动粒的原位结构。
该建议的第二个重点是阐明所需的着丝粒蛋白质之间的相互作用
对于着丝粒的基本功能,包括微管附着的形成和维持
着丝粒的身份。两种动粒蛋白,Ndc 80和CENP-Q,都被证明有助于
微管结合在体外和体内,但其各自的作用,在微管结合在体内还没有
充分表征。组成型着丝粒相关网络(CCAN)中的多种蛋白质具有
类似地被证明有助于CENP-A在着丝粒处的维持和沉积,但CCAN
包含多个相互关联的子复合体,其贡献从未被系统地测试过。在
目的2各内源基因座的诱变(和各野生型基因的快速消耗
产品)将用于阐明在体内和时间的准确性的相互作用,基础纺锤体
附着和维持着丝粒的同一性。这些实验将提供重要的见解,
人类着丝粒和动粒的结构和功能
分离和基因组的世代保真度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kathryn Kixmoeller其他文献
Kathryn Kixmoeller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kathryn Kixmoeller', 18)}}的其他基金
Investigating the structure and function of the human centromere and kinetochore
研究人类着丝粒和着丝粒的结构和功能
- 批准号:
10643935 - 财政年份:2021
- 资助金额:
$ 5.1万 - 项目类别:
Investigating the structure and function of the human centromere and kinetochore
研究人类着丝粒和着丝粒的结构和功能
- 批准号:
10434655 - 财政年份:2021
- 资助金额:
$ 5.1万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
$ 5.1万 - 项目类别:
Standard Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
$ 5.1万 - 项目类别:
Major Research Instrumentation
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
$ 5.1万 - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 5.1万 - 项目类别:
Research Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 5.1万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 5.1万 - 项目类别:
Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
- 批准号:
24K20765 - 财政年份:2024
- 资助金额:
$ 5.1万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 5.1万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 5.1万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427231 - 财政年份:2024
- 资助金额:
$ 5.1万 - 项目类别:
Standard Grant














{{item.name}}会员




