The encoding of uncertainty in the Drosophila compass system
果蝇罗盘系统中不确定性的编码
基本信息
- 批准号:10298651
- 负责人:
- 金额:$ 76.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsAntsAnxiety DisordersAreaBehaviorBehavior ControlBehavioralBrainCalciumCognitionComplexConflict (Psychology)CuesDarknessDataDecision TheoryDipteraDrosophila genusEnsureEnvironmental WindFutureGoalsHeadHumanImageIndividualInsectaInvestigationLearningLightManicMapsMeasuresMental disordersModelingMotionNeedlesNeuronsPeriodicityPopulationPositioning AttributePropertyRotationSensorySourceSpecific qualifier valueStatistical ModelsStructureSynapsesSystemTestingUncertaintyVisualWalkingWeightWorkconnectomeexperienceexperimental studyflyin vivo imagingmathematical modelnervous system disordernetwork modelsneural correlatepredictive modelingrelating to nervous systemtheoriestwo-photonvirtual reality environment
项目摘要
Summary
Strategic behaviors often take account of uncertainty. For example, if we are presented with two conflicting
pieces of information, we give less weight to the more uncertain source of information – i.e., the source of
information that leads to lower accuracy overall. Notably, even insects behave as if they make strategic use of
their own uncertainty. Importantly, the neural correlates of uncertainty are essentially unknown. In this
collaborative project, we will use modeling and neural imaging to identify the neural correlates of uncertainty. We
will focus on the “compass” in the Drosophila brain. The intrinsic neurons of the compass (EPG neurons) form a
topographic map of heading direction. At any given moment, there is a “bump” of neural activity in the EPG
population which rotates like a compass needle as the fly turns. The position of the bump is influenced by internal
self-motion cues, external visual cues, and external wind direction cues. In previous theoretical work, the EPG
ensemble has been modeled as a ring attractor network. In general, ring attractors do not represent uncertainty
in the variable they are encoding. Most experiments characterizing compass neuron activity have been
performed either under conditions of extreme certainty (e.g., a bright visual cue), or extreme uncertainty (e.g.,
complete darkness). Therefore, it remains unclear how the system behaves under moderate uncertainty, and if,
under such conditions, it can still be well-described by standard ring attractor networks. Ideally, the compass
network would represent not only the fly's estimated heading direction, but also the uncertainty associated with
that estimate, so that behavioral strategies could be adjusted accordingly. In this project, we will investigate (1)
how uncertainty is represented, and (2) how it affects spatial learning. We will use a combination of algorithmic
modeling, network modeling, and in vivo imaging experiments combined with virtual reality environments.
总结
战略行为往往考虑到不确定性。例如,如果我们面对两个相互冲突的
信息片段,我们给更不确定的信息来源的权重较小-即,的来源
导致整体准确度较低的信息。值得注意的是,即使是昆虫,
自己的不确定性。重要的是,不确定性的神经相关性本质上是未知的。在这
合作项目,我们将使用建模和神经成像来识别不确定性的神经相关性。我们
将聚焦于果蝇大脑中的“指南针”。罗盘的内在神经元(EPG神经元)形成一个
掘进方向地形图在任何给定的时刻,EPG中都有一个神经活动的“碰撞”,
种群就像罗盘针一样随着苍蝇的转动而转动。凸块的位置受内部
自我运动线索、外部视觉线索和外部风向线索。在以前的理论工作中,EPG
合奏已被建模为一个环吸引网络。一般来说,环吸引子并不代表不确定性
在他们编码的变量中。大多数表征罗盘神经元活动的实验都是
或者在极端确定性的条件下执行(例如,明亮的视觉提示),或极端的不确定性(例如,
完全黑暗)。因此,目前还不清楚系统在中等不确定性下的行为,如果,
在这种条件下,它仍然可以很好地描述标准环吸引子网络。理想情况下,指南针
网络将不仅代表苍蝇的估计航向,而且还代表与之相关的不确定性。
这样行为策略就可以相应地调整。在这个项目中,我们将研究(1)
不确定性是如何表现的,以及(2)它如何影响空间学习。我们将使用一种算法组合,
建模、网络建模和结合虚拟现实环境的体内成像实验。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bayesian inference in ring attractor networks.
- DOI:10.1073/pnas.2210622120
- 发表时间:2023-02-28
- 期刊:
- 影响因子:11.1
- 作者:
- 通讯作者:
Projection Filtering with Observed State Increments with Applications in Continuous-Time Circular Filtering.
- DOI:10.1109/tsp.2022.3143471
- 发表时间:2022
- 期刊:
- 影响因子:5.4
- 作者:Kutschireiter, Anna;Rast, Luke;Drugowitsch, Jan
- 通讯作者:Drugowitsch, Jan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jan Drugowitsch其他文献
Jan Drugowitsch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jan Drugowitsch', 18)}}的其他基金
Distributional reinforcement learning in the brain.
大脑中的分布式强化学习。
- 批准号:
9978224 - 财政年份:2020
- 资助金额:
$ 76.17万 - 项目类别:
Spinal Cord Nociceptive Circuits that Deliver Outputs to the Brain to Initiate Pain
脊髓伤害感受回路将输出传递到大脑以引发疼痛
- 批准号:
10053529 - 财政年份:2020
- 资助金额:
$ 76.17万 - 项目类别:
Spinal Cord Nociceptive Circuits that Deliver Outputs to the Brain to Initiate Pain
脊髓伤害感受回路将输出传递到大脑以引发疼痛
- 批准号:
10892412 - 财政年份:2020
- 资助金额:
$ 76.17万 - 项目类别:
Distributional Reinforcement Learning in the Brain
大脑中的分布式强化学习
- 批准号:
10709775 - 财政年份:2020
- 资助金额:
$ 76.17万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 76.17万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 76.17万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 76.17万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 76.17万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 76.17万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 76.17万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 76.17万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 76.17万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 76.17万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 76.17万 - 项目类别:
Research Grant














{{item.name}}会员




