Distributional Reinforcement Learning in the Brain
大脑中的分布式强化学习
基本信息
- 批准号:10709775
- 负责人:
- 金额:$ 58.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-15 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Project Summary
The field of artificial intelligence (AI) has recently made remarkable advances that resulted in new and
improved algorithms and network architectures that proved efficient empirically in silico. These
advances raise new questions in neurobiology: are these new algorithms used in the brain? The
present study focuses on a new algorithm developed in the field of reinforcement learning (RL), called
distributional RL, which outperforms other state-of-the-art RL algorithms and is regarded as a major
advancement in RL. In environments in which rewards are probabilistic with respect to its occurrence
and size, traditional RL algorithms have focused on learning to predict a single quantity, the average
over all potential rewards. Distributional RL, by contrast, learns to predict the entire distribution over
rewards (or values) by employing multiple value predictors that together encode all possible levels of
future reward concurrently. Remarkably, theoretical work has shown that a class of distributional RL,
called ‘quantile distributional RL’, can arise out of a simple modification of traditional RL that
introduces structured variability in dopamine reward prediction error (RPE) signals.
This project set out to test the hypothesis that the brain utilizes distributional RL to predict future
rewards. Aim 1 will explore the characteristics of distributional RL theoretically and make predictions
that allow for testing distributional RL in the brain. Theoretical investigations and simulations will be
used to determine how value representations in distributional RL differ from pre-existing population
coding schemes for representing probability distributions (probabilistic population codes, distributed
distributional codes, etc.). Aim 2 will examine the activity of neurons that are thought to signal RPEs
and reward expectation and test various predictions of distributional RL. Specifically, the activity of
dopamine neurons in the ventral tegmental area and neurons in the ventral striatum and orbitofrontal
cortex will be compared to key predictions of distributional RL. Aim 3 will use optogenetic
manipulation to causally demonstrate the relationship between RPE signals and distributional codes.
项目摘要
人工智能(AI)领域最近取得了显着的进步,
改进的算法和网络架构,在计算机上证明是有效的。这些
神经生物学的进步提出了新的问题:这些新的算法是否用于大脑?的
目前的研究集中在强化学习(RL)领域开发的一种新算法,称为
分布式RL,它优于其他国家的最先进的RL算法,被认为是一个主要的
在RL的进步。在奖励的发生具有概率性的环境中,
和大小,传统的RL算法专注于学习预测一个单一的量,平均值
所有潜在的奖励。相比之下,分布式RL学习预测整个分布,
通过采用多个价值预测器来获得奖励(或价值),这些预测器共同编码所有可能的
未来的奖励同时。值得注意的是,理论工作表明,一类分布RL,
称为“分位数分布RL”,可以从传统RL的简单修改中产生,
在多巴胺奖赏预测误差(RPE)信号中引入结构化变异。
该项目旨在测试大脑利用分布强化学习来预测未来的假设
奖励目标1将从理论上探讨分布式强化学习的特征并做出预测
来测试大脑中的分布强化学习。理论研究和模拟将是
用于确定分布RL中的值表示与预先存在的总体有何不同
用于表示概率分布的编码方案(概率总体代码,分布式
分布式代码等)。目标2将检测被认为是向RPE发出信号的神经元的活动
和奖励期望,并测试分布RL的各种预测。具体而言,
腹侧被盖区的多巴胺神经元和腹侧纹状体和眶额区的神经元
皮质将与分布RL的关键预测进行比较。Aim 3将使用光遗传学
操纵,以因果地证明RPE信号和分布代码之间的关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jan Drugowitsch其他文献
Jan Drugowitsch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jan Drugowitsch', 18)}}的其他基金
The encoding of uncertainty in the Drosophila compass system
果蝇罗盘系统中不确定性的编码
- 批准号:
10298651 - 财政年份:2021
- 资助金额:
$ 58.12万 - 项目类别:
Distributional reinforcement learning in the brain.
大脑中的分布式强化学习。
- 批准号:
9978224 - 财政年份:2020
- 资助金额:
$ 58.12万 - 项目类别:
Spinal Cord Nociceptive Circuits that Deliver Outputs to the Brain to Initiate Pain
脊髓伤害感受回路将输出传递到大脑以引发疼痛
- 批准号:
10053529 - 财政年份:2020
- 资助金额:
$ 58.12万 - 项目类别:
Spinal Cord Nociceptive Circuits that Deliver Outputs to the Brain to Initiate Pain
脊髓伤害感受回路将输出传递到大脑以引发疼痛
- 批准号:
10892412 - 财政年份:2020
- 资助金额:
$ 58.12万 - 项目类别:
相似国自然基金
海桑属杂种区强化(Reinforcement)的检验与遗传基础研究
- 批准号:30800060
- 批准年份:2008
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: SLES: Safe Distributional-Reinforcement Learning-Enabled Systems: Theories, Algorithms, and Experiments
协作研究:SLES:安全的分布式强化学习系统:理论、算法和实验
- 批准号:
2331781 - 财政年份:2023
- 资助金额:
$ 58.12万 - 项目类别:
Standard Grant
Collaborative Research: SLES: Safe Distributional-Reinforcement Learning-Enabled Systems: Theories, Algorithms, and Experiments
协作研究:SLES:安全的分布式强化学习系统:理论、算法和实验
- 批准号:
2331780 - 财政年份:2023
- 资助金额:
$ 58.12万 - 项目类别:
Standard Grant
Collaborative Research: SLES: Safe Distributional-Reinforcement Learning-Enabled Systems: Theories, Algorithms, and Experiments
协作研究:SLES:安全的分布式强化学习系统:理论、算法和实验
- 批准号:
2331782 - 财政年份:2023
- 资助金额:
$ 58.12万 - 项目类别:
Standard Grant
The role of distributional reinforcement learning in human neurons during impulsive choices
分布式强化学习在人类神经元冲动选择过程中的作用
- 批准号:
10335061 - 财政年份:2022
- 资助金额:
$ 58.12万 - 项目类别:
The role of distributional reinforcement learning in human neurons during impulsive choices
分布式强化学习在人类神经元冲动选择过程中的作用
- 批准号:
10561650 - 财政年份:2022
- 资助金额:
$ 58.12万 - 项目类别:
Distributional value coding and reinforcement learning in the brain
大脑中的分布值编码和强化学习
- 批准号:
10539251 - 财政年份:2021
- 资助金额:
$ 58.12万 - 项目类别:
Markov Chains and Applications to Distributional Reinforcement Learning for Multi-Step Methods
马尔可夫链及其在多步方法的分布式强化学习中的应用
- 批准号:
566152-2021 - 财政年份:2021
- 资助金额:
$ 58.12万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Distributional Value Coding and Reinforcement Learning in the Brain
大脑中的分布值编码和强化学习
- 批准号:
10668487 - 财政年份:2021
- 资助金额:
$ 58.12万 - 项目类别:
Distributional value coding and reinforcement learning in the brain
大脑中的分布值编码和强化学习
- 批准号:
10311130 - 财政年份:2021
- 资助金额:
$ 58.12万 - 项目类别:
Distributional reinforcement learning in the brain.
大脑中的分布式强化学习。
- 批准号:
9978224 - 财政年份:2020
- 资助金额:
$ 58.12万 - 项目类别:














{{item.name}}会员




