Data-Science Core
数据科学核心
基本信息
- 批准号:10400145
- 负责人:
- 金额:$ 53.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:ArchitectureBehavioralBrainChargeCodeCollaborationsCommunitiesComputer ModelsComputer softwareDataData AnalysesData Science CoreData ScientistData SourcesData Storage and RetrievalDevelopmentDocumentationEnsureExperimental DesignsFactor AnalysisFutureGaussian modelGoalsInformation TechnologyInfrastructureInternationalJointsLabelLaboratoriesMetadataMethodsModelingMorphologic artifactsNatureNeurosciencesPopulationPrincipal Component AnalysisProcessPublishingReproducibilityResearchResearch PersonnelResourcesSoftware ToolsSource CodeStandardizationStatistical ModelsStimulusStructureTechniquesTestingTimeVariantWorkcomputer infrastructuredata accessdata cleaningdata exchangedata sharingdata standardsexperienceexperimental studyimprovedmembermultidisciplinaryneural modelneuromechanismneurophysiologyopen sourcerelating to nervous systemrepositorysearchable databasetheoriestoolvoltage
项目摘要
Project Summary
This application proposes to use theory-driven experimental design, with advanced techniques for neural
recording, data analysis, and computational modeling, to investigate the neural mechanisms, circuits, and
representations underlying the perceptual process of causal inference in space and time. The multidisciplinary
nature of the proposed work requires close collaboration among consortium members. The Data Science Core
will facilitate this collaboration and provide the tools necessary to handle and analyze the large-scale neural
data collected in the proposed experiments. To achieve these goals, the Data Science Core will rely on
existing infrastructure, open standards, and open-source software as much as possible. Aim 1 will establish a
unified data standard, and data exchange and storage infrastructure, using the architecture established by the
International Brain Laboratory, which stores metadata in a relational, searchable database, and experimental
and processed data on a separate file server. Github will enable joint development, exchange, and
documentation of the code underlying data preprocessing, processing, and analysis. To relate data to models,
voltages recorded experimentally must be transformed into standardized spike times and counts, without
artifacts or confounds. Aim 2 will develop a principled, transparent, and reproducible pipeline for this
preprocessing and apply it to all neurophysiological data generated in Projects B and C. The first stage will
eliminate electrical and behavioral artifacts and convert voltages into spike times and local field potentials. The
second stage will use a statistical model of neural activity to identify and label potential outliers. This pipeline
will produce annotated and cleaned data in a standardized format that can be used to perform reliable
analyses, model fitting, and hypothesis tests. Aim 3 will combine cutting-edge methods and convert them to
software tools that can be reliably applied to new data. Most of this effort will be applied to variants of latent-
state discovery techniques that jointly fit the influence of stimuli, model-driven hypothesized latent states, and
unobserved latent states such as slow fluctuations. The central work of this aim is to implement those tools,
help the team apply them to the data generated by the collaboration, and refine them for public use. Aim 4 is to
share the experimental data with the wider research community by uploading the relevant portions of the data
to public and freely accessible repositories. Code, documentation, and use cases will be made public on
Github. The use of standard data structures, open standards, and open-source software will ensure barrier-free
access, ease of use, and reproducibility for neuroscience researchers. With the help of a full-time data scientist
hired to manage these efforts, the Data Science Core will build on established data storage and analysis
standards and methods to produce cleaned and standardized data that our consortium can use to close the
loop between theory and experiments. By sharing code, use cases, and data with other researchers, this
project will also improve and extend these resources for future use by others.
项目摘要
本申请建议使用理论驱动的实验设计,与先进的技术,神经
记录,数据分析和计算建模,以研究神经机制,电路,
在空间和时间的因果推理的感知过程的表征。多学科
拟议工作的性质要求合作体成员之间密切合作。数据科学核心
将促进这种合作,并提供必要的工具来处理和分析大规模的神经网络。
在实验中收集的数据。为了实现这些目标,数据科学核心将依赖于
尽可能利用现有的基础设施、开放标准和开源软件。目标1将建立一个
统一的数据标准,以及数据交换和存储基础设施,使用
国际脑实验室,它将元数据存储在一个关系型的、可搜索的数据库中,
并在另一个文件服务器上处理数据GitHub将支持联合开发、交换和
数据预处理、处理和分析的基础代码文档。要将数据与模型关联,
实验记录的电压必须转换成标准化的尖峰时间和计数,
艺术品或混淆品AIM 2将为此开发一个有原则的、透明的、可复制的管道
预处理并将其应用于项目B和C中生成的所有神经生理数据。第一阶段将
消除电气和行为伪影,并将电压转换为尖峰时间和局部场电位。的
第二阶段将使用神经活动的统计模型来识别和标记潜在的离群值。这条管道
将以标准化格式生成带注释和经过清理的数据,
分析、模型拟合和假设检验。Aim 3将联合收割机结合尖端的方法,并将其转化为
可以可靠地应用于新数据的软件工具。这项工作的大部分将应用于潜在的变体-
状态发现技术,共同适应刺激的影响,模型驱动的假设潜在状态,
未观察到的潜在状态,如缓慢波动。这一目标的中心工作是执行这些工具,
帮助团队将它们应用到协作生成的数据中,并将其细化以供公众使用。目标4:
通过上传数据的相关部分,与更广泛的研究社区共享实验数据
到公共和自由访问的存储库。代码、文档和用例将在
GitHub.使用标准数据结构、开放标准和开放源码软件将确保无障碍
神经科学研究人员的访问,易用性和可重复性。在全职数据科学家的帮助下,
为了管理这些工作,数据科学核心将建立在现有的数据存储和分析基础上
标准和方法,以产生清洁和标准化的数据,我们的财团可以用来关闭
理论与实验之间的循环。通过与其他研究人员共享代码、用例和数据,
该项目还将改进和扩大这些资源,供其他方面今后使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jan Drugowitsch其他文献
Jan Drugowitsch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jan Drugowitsch', 18)}}的其他基金
The encoding of uncertainty in the Drosophila compass system
果蝇罗盘系统中不确定性的编码
- 批准号:
10298651 - 财政年份:2021
- 资助金额:
$ 53.02万 - 项目类别:
Distributional reinforcement learning in the brain.
大脑中的分布式强化学习。
- 批准号:
9978224 - 财政年份:2020
- 资助金额:
$ 53.02万 - 项目类别:
Spinal Cord Nociceptive Circuits that Deliver Outputs to the Brain to Initiate Pain
脊髓伤害感受回路将输出传递到大脑以引发疼痛
- 批准号:
10053529 - 财政年份:2020
- 资助金额:
$ 53.02万 - 项目类别:
Spinal Cord Nociceptive Circuits that Deliver Outputs to the Brain to Initiate Pain
脊髓伤害感受回路将输出传递到大脑以引发疼痛
- 批准号:
10892412 - 财政年份:2020
- 资助金额:
$ 53.02万 - 项目类别:
Distributional Reinforcement Learning in the Brain
大脑中的分布式强化学习
- 批准号:
10709775 - 财政年份:2020
- 资助金额:
$ 53.02万 - 项目类别:
相似国自然基金
Behavioral Insights on Cooperation in Social Dilemmas
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国优秀青年学者研究基金项目
相似海外基金
Differentiating innate and conditioned fear in behavioral level using pupillometry and neural level using brain-wide traveling wave
使用瞳孔测量法区分行为水平上的先天性恐惧和条件性恐惧,并使用全脑行波区分神经水平上的先天性恐惧和条件性恐惧
- 批准号:
23K28389 - 财政年份:2024
- 资助金额:
$ 53.02万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Computing rules of the social brain: behavioral mechanisms of function and dysfunction in biological collectives
职业:社会大脑的计算规则:生物集体中功能和功能障碍的行为机制
- 批准号:
2338596 - 财政年份:2024
- 资助金额:
$ 53.02万 - 项目类别:
Continuing Grant
Analysis of molecular and neural basis of the brain correlated with behavioral characteristics of cockroaches
与蟑螂行为特征相关的大脑分子和神经基础分析
- 批准号:
23K18148 - 财政年份:2023
- 资助金额:
$ 53.02万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Quantifying behavioral and neurologic plasticity induced by EEG visual P300-Brain Computer Interface-enabled neurologic music therapy in children with cerebral palsy
量化脑瘫儿童脑电图视觉 P300 脑机接口支持的神经音乐疗法诱导的行为和神经可塑性
- 批准号:
495277 - 财政年份:2023
- 资助金额:
$ 53.02万 - 项目类别:
Quantitative Electrophysiology to Link Neuroplasticity, Brain State, and Behavioral Change in Human Visual Cortex
定量电生理学将神经可塑性、大脑状态和人类视觉皮层的行为变化联系起来
- 批准号:
10643593 - 财政年份:2023
- 资助金额:
$ 53.02万 - 项目类别:
Development of behavior modification approach using cognitive behavioral therapy for patients with higher brain dysfunction
使用认知行为疗法开发针对重度脑功能障碍患者的行为矫正方法
- 批准号:
23K02986 - 财政年份:2023
- 资助金额:
$ 53.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Differentiating innate and conditioned fear in behavioral level using pupillometry and neural level using brain-wide traveling wave
使用瞳孔测量法区分行为水平上的先天性恐惧和条件性恐惧,并使用全脑行波区分神经水平上的先天性恐惧和条件性恐惧
- 批准号:
23H03700 - 财政年份:2023
- 资助金额:
$ 53.02万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
An integrative Bayesian approach for linking brain to behavioral phenotype
将大脑与行为表型联系起来的综合贝叶斯方法
- 批准号:
10718215 - 财政年份:2023
- 资助金额:
$ 53.02万 - 项目类别:
Influence of DISC1 genetics on brain and behavioral development of offspring exposed to Maternal immune activation
DISC1 遗传学对暴露于母体免疫激活的后代大脑和行为发育的影响
- 批准号:
10607339 - 财政年份:2023
- 资助金额:
$ 53.02万 - 项目类别:
Impacts of morphine and HIV-Tat exposures and dimethylfumarate treatment on brain BDNF and mitochondrial and behavioral dysfunction.
吗啡和 HIV-Tat 暴露以及富马酸二甲酯治疗对大脑 BDNF 以及线粒体和行为功能障碍的影响。
- 批准号:
10619675 - 财政年份:2023
- 资助金额:
$ 53.02万 - 项目类别:














{{item.name}}会员




