Methods for mapping cell adhesion receptors
绘制细胞粘附受体图谱的方法
基本信息
- 批准号:10297678
- 负责人:
- 金额:$ 33.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-02-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AdhesionsAdhesivesAtomic Force MicroscopyBenchmarkingBindingBiochemicalBiological AssayBiophysicsCell AdhesionCell Adhesion MoleculesCell ExtractsCell membraneCell surfaceCell-Cell AdhesionCellsCellular StructuresChemicalsComputer SimulationCouplingDataDesmosomesDiseaseE-CadherinEnvironmentEnzymesEpidermisEpithelial CellsExposure toFluorescence MicroscopyFoundationsFundingGenesGoalsHeartHeart DiseasesHumanIn SituInheritedIntegral Membrane ProteinIntegrinsKineticsLabelLigandsLongitudinal StudiesMapsMeasurementMeasuresMechanical StressMechanicsMediatingMembraneMembrane ProteinsMethodsMolecularMolecular ConformationMonitorMutationOrganellesPathologyPlayPositioning AttributeProtein Tyrosine KinaseProteinsResolutionRoleSignal TransductionSkinStructureTechnologyTestingTissuesadhesion receptorbasebiophysical techniquesbiophysical toolscell typedesmocollinexperimental studyextracellularinsightinstrumentationmutantnew technologynovelprototypereceptorrecruitsingle moleculesingle-molecule FRETtool
项目摘要
ABSTRACT
Transmembrane proteins, which constitute 20%-30% of human genes, play essential roles in coupling
cells and in sensing mechanical and biochemical signals from the environment. However, it is extremely
challenging to map transmembrane protein interactions using traditional biochemical methods. The first goal of
this proposal is to develop Binding Assay for Interacting Transmembrane proteins (BAIT), a molecular technology
to discover novel transmembrane protein interactions in cells. BAIT will be performed in two steps. First, we will
screen for transmembrane proteins that are located proximal to a target protein, by dual tagging both the
extracellular and cytoplasmic region of the target with a proximity labeling enzyme. Next, we will directly test
binding interactions between proximal proteins and the target protein using single molecule Atomic Force
Microscopy (AFM) and also visualize co-localization of the target and binding partner using super-resolution
fluorescence microscopy. We anticipate that BAIT will have a game changing impact in discovering novel
transmembrane junctional proteins interactions on the cell surface.
The second goal of our proposal is to use BAIT, along with other biophysical tools, to resolve the
assembly and organization of desmosomes, an essential intercellular adhesive organelle that mediates the
integrity of tissues like the epidermis and heart. While mutations in desmosomal proteins are common in
hereditary heart diseases and in skin pathologies, the molecular mechanisms by which these proteins assemble
at the plasma membrane are unknown. Since previous studies show that desmosome formation requires E-
cadherin (Ecad), a ubiquitous cell-cell adhesion protein, we developed a prototype BAIT assay using Ecad as
the target and discovered that two obligate desmosomal adhesive proteins, Desmocollin (Dsc) and Desmoglien
(Dsg), bind to Ecad extracellular regions. Using biophysical experiments and cellular structure function studies
we showed that Ecad recruits Dsg to intercellular contacts, and triggers desmosome formation. In Aim 2 of the
proposal, we will characterize binding interfaces and kinetics of Ecad and Dsc/Dsg interactions and determine
their binding conformations using single molecule AFM binding assays, single molecule Fluorescence
Resonance Energy Transfer and computer simulations. We will also introduce mutant Ecad, Dsc and Dsg in
epithelial cells and monitor desmosome assembly and ultrastructure using super-resolution fluorescence
microscopy. These studies will provide key molecular insights into desmosomal integrity in both healthy tissues
and in disease states.
摘要
跨膜蛋白占人类基因的20%-30%,在偶联过程中起着至关重要的作用
在感知来自环境的机械和生物化学信号方面也是如此。然而,它是极端的
使用传统的生物化学方法绘制跨膜蛋白相互作用图具有挑战性。的第一个目标
这项建议是为了发展相互作用跨膜蛋白(诱饵)的结合分析,这是一项分子技术
发现细胞内新的跨膜蛋白相互作用。诱饵将分两步进行。首先,我们将
筛选位于目标蛋白近端的跨膜蛋白,通过双重标记
用邻近标记酶标记靶标的胞外和胞浆区域。接下来,我们将直接测试
单分子原子力作用下近端蛋白质与靶蛋白质的结合作用
显微镜(AFM),并使用超分辨率可视化目标和结合伙伴的共同定位
荧光显微镜。我们预计,诱饵将在发现小说方面产生改变游戏规则的影响
跨膜连接蛋白在细胞表面的相互作用。
我们提案的第二个目标是使用诱饵以及其他生物物理工具来解决
桥粒的组装和组织,这是一种重要的细胞间黏附细胞器,介导
表皮和心脏等组织的完整性。而桥粒蛋白的突变在
遗传性心脏病和皮肤病理中,这些蛋白组装的分子机制
在质膜上是未知的。由于先前的研究表明桥粒的形成需要E-
钙粘附素(ECAD),一种普遍存在的细胞间黏附蛋白,我们建立了一种以ECAD为模板的诱饵检测方法
并发现两种专有的桥粒黏附蛋白,桥粒粘附素(Desmocolin,DSC)和桥粒粘附素
(DSG),与ECAD胞外区结合。利用生物物理实验和细胞结构功能研究
我们发现,ECAD招募DSG进行细胞间接触,并触发桥粒的形成。在目标2中,
我们将表征ECAD和DSC/DSG相互作用的结合界面和动力学,并确定
用单分子AFM结合分析、单分子荧光法测定其结合构象
共振能量转移和计算机模拟。我们还将引入突变体ECAD、DSC和DSG
利用超分辨荧光技术监测上皮细胞桥粒组装和超微结构
显微镜。这些研究将为这两种健康组织的桥粒完整性提供关键的分子洞察力
在疾病状态下。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sanjeevi Sivasankar其他文献
Sanjeevi Sivasankar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sanjeevi Sivasankar', 18)}}的其他基金
Mechanosensitive cadherin adhesion and its regulation
机械敏感钙粘蛋白粘附及其调控
- 批准号:
10352421 - 财政年份:2021
- 资助金额:
$ 33.25万 - 项目类别:
Mechanosensitive cadherin adhesion and its regulation
机械敏感钙粘蛋白粘附及其调控
- 批准号:
10553124 - 财政年份:2021
- 资助金额:
$ 33.25万 - 项目类别:
Microscope for ultrasensitive measurement of single-molecule interaction and conformation
用于超灵敏测量单分子相互作用和构象的显微镜
- 批准号:
9219009 - 财政年份:2017
- 资助金额:
$ 33.25万 - 项目类别:
相似海外基金
I-Corps: Translation Potential of Peptidic Ensembles as Novel Bio-adhesives
I-Corps:肽整体作为新型生物粘合剂的转化潜力
- 批准号:
2409620 - 财政年份:2024
- 资助金额:
$ 33.25万 - 项目类别:
Standard Grant
Architectural design of active adhesives
活性粘合剂的结构设计
- 批准号:
2403716 - 财政年份:2024
- 资助金额:
$ 33.25万 - 项目类别:
Standard Grant
Design of non-swellable adhesives for brain surgery using cyclodextrin inclusion polymer
使用环糊精包合物聚合物脑外科不可溶胀粘合剂的设计
- 批准号:
23H01718 - 财政年份:2023
- 资助金额:
$ 33.25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Meta-material adhesives for improved performance and functionalisation of bondlines
超材料粘合剂可提高粘合层的性能和功能化
- 批准号:
EP/W019450/1 - 财政年份:2023
- 资助金额:
$ 33.25万 - 项目类别:
Fellowship
Light-propelled dental adhesives with enhanced bonding capability
具有增强粘合能力的光驱动牙科粘合剂
- 批准号:
10741660 - 财政年份:2023
- 资助金额:
$ 33.25万 - 项目类别:
DMREF: Accelerating the Design of Adhesives with Nanoscale Control of Thermomechanical Properties
DMREF:通过热机械性能的纳米级控制加速粘合剂的设计
- 批准号:
2323317 - 财政年份:2023
- 资助金额:
$ 33.25万 - 项目类别:
Continuing Grant
Mag-Cure: A novel method for magnetically induced bonding and de-bonding of thermoset adhesives in the Automotive Industry
Mag-Cure:汽车行业中热固性粘合剂磁感应粘合和脱粘的新方法
- 批准号:
10062336 - 财政年份:2023
- 资助金额:
$ 33.25万 - 项目类别:
Collaborative R&D
Biodegradable, Biocompatible Pressure Sensitive Adhesives
可生物降解、生物相容性压敏粘合剂
- 批准号:
10677869 - 财政年份:2022
- 资助金额:
$ 33.25万 - 项目类别:
Poly(glycerol carbonate) pressure sensitive adhesives for the in vivo closure of alveolar pleural fistulae
用于体内闭合肺泡胸膜瘘的聚(甘油碳酸酯)压敏粘合剂
- 批准号:
10746743 - 财政年份:2022
- 资助金额:
$ 33.25万 - 项目类别:
Enhanced bio-production of difficult to make peptide ingredients for specialty adhesives and personal care
增强用于特种粘合剂和个人护理品的难以制造的肽成分的生物生产
- 批准号:
10021363 - 财政年份:2022
- 资助金额:
$ 33.25万 - 项目类别:
Investment Accelerator














{{item.name}}会员




