Genetic Analysis of Neuronal Hypoxia Resistance
神经元耐缺氧的遗传分析
基本信息
- 批准号:10297456
- 负责人:
- 金额:$ 41.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-04-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AerobicAnaerobic BacteriaAnimal ModelAntioxidantsAutophagocytosisBindingBiologicalBiological ModelsCOVID-19CRISPR/Cas technologyCaenorhabditis elegansCellsCerebral PalsyChIP-seqDiseaseEnhancersEnvironmentEnzymesEtiologyExcisionGene ExpressionGenerationsGenesGeneticGenetic Enhancer ElementGenetic ModelsGenetic TranscriptionGluconeogenesisHypoxiaHypoxia Inducible FactorImpairmentIndividualIschemic StrokeMalignant NeoplasmsMetabolicMetabolismMitochondriaMuscleMutationMyocardial InfarctionNADPNerve DegenerationNeuronal HypoxiaNeuronsOrganismOrthologous GeneOxidative PhosphorylationOxidative StressPathway interactionsPentosephosphate PathwayPhasePlayProcollagen-Proline DioxygenaseProductionProlineProteinsProteolysisPulmonary HypertensionReactive Oxygen SpeciesReduced GlutathioneRegulationReporterReproducibilityResistanceRoleSideSolid NeoplasmSourceSpinal cord injuryTestingTissuesTranscriptional RegulationTraumatic Brain InjuryTumor Stem CellsWarburg Effectcombatdeprivationdisorder preventionexperimental studyfactor Agenetic analysishuman diseasehypoxia inducible factor 1in vivometabolomicsmutantnormoxianovelpromoterreceptorresponsetherapeutic targettissue culturetranscriptometranscriptome sequencingubiquitin ligase
项目摘要
PROJECT SUMMARY
Hypoxia (O2 deprivation) plays a central role in diverse human diseases, including ischemic stroke, myocardial
infarction, pulmonary hypertension, Cerebral Palsy, COVID-19, and cancer. Metazoans respond to hypoxia by
employing the conserved hypoxia response pathway. The pathway senses O2 through a prolyl hydroxylase
(PHD) enzyme, which uses O2 to hydroxylate specific proline side chains on the Hypoxia Inducible Factor α
(HIFα). Once hydroxylated, HIFα is ubiquitinated by the Von Hippel-Lindau (VHL) ubiquitin ligase, resulting in
its proteolysis. When O2 is abundant, HIFα is unstable. When hypoxia ensues, PHD enzymes lack O2 to
hydroxylate HIFα, resulting in HIFα stabilization and the transcriptional regulation of multiple target genes that
help the organism survive. Under some circumstances (e.g., solid tumors, stem cell niches), HIFα is activated
despite adequate O2 levels (i.e., the Warburg effect), but how the response differs under aerobic conditions is
unclear. While the HIFα pathway has been well studied in tissue culture, a full understanding of how it
operates in specific tissues (particularly neurons) in vivo to provide tailored responses is needed.
This proposal takes advantage of genetics and an intact, isogenic model organism (C. elegans) that
can thrive under hypoxia, and whose environment and genetics can be controlled with fidelity and
reproducibility. C. elegans possess single genes for the PHD (EGL-9), the VHL (VHL-1), and the HIFα (HIF-1).
The overall premise of this proposal is that the hypoxia response pathway pathway protects against hypoxic
damage by (1) removing mitochondria through mitophagy, which eliminates a source of ROS, and by (2)
mobilizing antioxidant metabolism, which detoxifies ROS during hypoxia and reoxygenation. A better
understanding of the pathway response will provide therapeutic targets for diseases associated with hypoxia.
Preliminary ChIP-seq, RNA-seq, and metabolomics suggest that HIF-1 promotes gluconeogenesis, the
pentose phosphate pathway, and antioxidant generation. We hypothesize that HIF-1 promotes this metabolic
reprograming by binding an enhancer sequence and activating the expression of the PEP carboxykinase pck-
1, a key enzyme for moving metabolites through gluconeogenesis. Aim 1 tests this hypothesis by using
CRISPR/Cas9 editing to remove this enhancer, then testing for the effects on HIF-1 binding, pck-1 and global
gene expression, metabolism, oxidative stress resistance, neurodegeneration, and hypoxia survival.
Preliminary cell biological approaches with a genetically encoded fluorescent reporter for mitophagy
suggest that HIF-1 promotes mitophagy. We hypothesize that HIF-1 promotes mitophagy by binding
enhancer sequences and activating the expression of the mitophagy receptors fndc-1 and dct-1. Aim 2 tests
this hypothesis by using CRISPR/Cas9 editing to remove these enhancers, then testing for the effects on HIF-
1 binding, global gene expression, mitophagy and bulk autophagy, metabolism, oxidative stress resistance,
neurodegeneration, and hypoxia survival.
项目摘要
缺氧(O2剥夺)在潜水人类疾病中起着核心作用,包括缺血性中风,心肌
梗塞,肺动脉高压,大脑麻痹,Covid-19和癌症。后生动物对缺氧的反应
采用保守的缺氧反应途径。该途径通过羟基羟化酶感测O2
(博士学位)酶,该酶使用O2在缺氧诱导因子α上羟基特异性脯氨酸侧链α
(HIFα)。一旦羟基化,HIFα就被Von Hippel-Lindau(VHL)泛素连接酶泛素化,导致
它的蛋白水解。当O2丰富时,HIFα不稳定。当发生缺氧时,博士酶缺乏O2
羟基HIFα,导致HIFα稳定和多个靶基因的转录调节
帮助生物生存。在某些情况下(例如实体瘤,干细胞壁ni),HIFα被激活
尽管有足够的O2水平(即Warburg效应),但是有氧条件下的反应差异是如何
不清楚。虽然HIFα途径在组织培养中已经很好地研究了
需要在特定的组织(部分神经元)中进行体内进行量身定制的反应。
该提议利用了遗传学和完整的同基因模型生物(秀丽隐杆线虫)
可以在缺氧下壮成长,并且可以通过忠诚和遗传学来控制其环境和遗传学
可重复性。秀丽隐杆线虫具有PHD(EGL-9),VHL(VHL-1)和HIFα(HIF-1)的单个基因。
该提议的总体前提是缺氧反应途径途径可预防缺氧
通过(1)通过线粒体去除线粒体的损坏,这消除了ROS的来源,以及(2)
动员抗氧化剂代谢,该代谢在缺氧和氧化过程中排毒ROS。更好
对途径反应的理解将为与缺氧相关的疾病提供治疗靶标。
初步的CHIP-SEQ,RNA-SEQ和代谢组学表明,HIF-1促进糖异生,即
戊糖磷酸盐途径和抗氧化剂产生。我们假设HIF-1促进了这种代谢
通过结合增强子序列并激活Pep羧基酶PCK-的表达来重新编程
1,用于通过糖异生的代谢产物的关键酶。 AIM 1通过使用
CRISPR/CAS9编辑以删除此增强器,然后测试对HIF-1绑定,PCK-1和Global的影响
基因表达,代谢,氧化应激抗性,神经退行性和缺氧存活。
初步的细胞生物学方法,采用一般编码的线粒体编码的荧光记者
建议HIF-1促进线粒体。我们假设HIF-1通过结合促进线粒体
增强子序列并激活线粒体接收器FNDC-1和DCT-1的表达。 AIM 2测试
该假设通过使用CRISPR/CAS9编辑来删除这些增强剂,然后测试对HIF的影响
1结合,整体基因表达,线粒体和散装自噬,代谢,氧化应激性,
神经变性和缺氧存活。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher G Rongo其他文献
Christopher G Rongo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher G Rongo', 18)}}的其他基金
Multi-Omic Analysis of BMP-Insulin Signaling Crosstalk in Lipid Metabolism during Aging
衰老过程中脂质代谢中 BMP-胰岛素信号串扰的多组学分析
- 批准号:
10351581 - 财政年份:2022
- 资助金额:
$ 41.2万 - 项目类别:
Multi-Omic Analysis of BMP-Insulin Signaling Crosstalk in Lipid Metabolism during Aging
衰老过程中脂质代谢中 BMP-胰岛素信号串扰的多组学分析
- 批准号:
10553134 - 财政年份:2022
- 资助金额:
$ 41.2万 - 项目类别:
Genetic Analysis of Neuronal Hypoxic Stress Resistance
神经元耐缺氧应激的遗传分析
- 批准号:
9753252 - 财政年份:2012
- 资助金额:
$ 41.2万 - 项目类别:
Genetics Analysis of Neuronal Hypoxic Stress Resistance
神经元耐缺氧应激的遗传学分析
- 批准号:
8650508 - 财政年份:2012
- 资助金额:
$ 41.2万 - 项目类别:
Genetic Analysis of Neuronal Hypoxic Stress Resistance
神经元耐缺氧应激的遗传分析
- 批准号:
9979647 - 财政年份:2012
- 资助金额:
$ 41.2万 - 项目类别:
Genetics Analysis of Neuronal Hypoxic Stress Resistance
神经元耐缺氧应激的遗传学分析
- 批准号:
8457043 - 财政年份:2012
- 资助金额:
$ 41.2万 - 项目类别:
Genetics Analysis of Neuronal Hypoxic Stress Resistance
神经元耐缺氧应激的遗传学分析
- 批准号:
8629773 - 财政年份:2012
- 资助金额:
$ 41.2万 - 项目类别:
相似国自然基金
厌氧菌藻生物膜降解噻唑化合物的氢营养代谢机理研究
- 批准号:52300043
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道厌氧菌产新颖鞘磺脂及其免疫调节活性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道厌氧菌产新颖鞘磺脂及其免疫调节活性研究
- 批准号:82204251
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
微氧环境下兼性厌氧菌和产甲烷菌降解长链脂肪酸的协同机制
- 批准号:52170037
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
兼性厌氧菌JPG1在不同氧条件下对铜胁迫的抗性机制与调控
- 批准号:52070037
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
Skeletal muscle performance and cellular adaptations to high hemoglobin-oxygen affinity
骨骼肌性能和细胞对高血红蛋白-氧亲和力的适应
- 批准号:
10062667 - 财政年份:2020
- 资助金额:
$ 41.2万 - 项目类别:
Skeletal muscle performance and cellular adaptations to high hemoglobin-oxygen affinity
骨骼肌性能和细胞对高血红蛋白-氧亲和力的适应
- 批准号:
10292937 - 财政年份:2020
- 资助金额:
$ 41.2万 - 项目类别:
Spatially resolved measurements of retinal metabolism
视网膜代谢的空间分辨测量
- 批准号:
10153785 - 财政年份:2019
- 资助金额:
$ 41.2万 - 项目类别:
Spatially resolved measurements of retinal metabolism
视网膜代谢的空间分辨测量
- 批准号:
9906901 - 财政年份:2019
- 资助金额:
$ 41.2万 - 项目类别:
Phenotypic profiling of bacterial stress response networks: A transformative framework for characterizing and predicting antibiotic targets and interactions
细菌应激反应网络的表型分析:用于表征和预测抗生素靶点和相互作用的变革框架
- 批准号:
9898254 - 财政年份:2018
- 资助金额:
$ 41.2万 - 项目类别: