Transcriptional Regulation by Angiotensin II in Vascular Smooth Muscle Cells
血管紧张素 II 在血管平滑肌细胞中的转录调节
基本信息
- 批准号:10297721
- 负责人:
- 金额:$ 70.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-01-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAdultAffectAngiotensin IIAortaArteriesAtherosclerosisBioinformaticsBiological AssayBlood VesselsCRISPR/Cas technologyCandidate Disease GeneCardiovascular DiseasesCellsChromatinClinicalComplications of Diabetes MellitusDNADNA MethylationDataDevelopmentDiabetes MellitusDiabetic mouseEnhancersEpigenetic ProcessExtracellular MatrixFibroblastsFunctional disorderFundingGenesGeneticGenomeGlucoseGrowth FactorHealthcareHi-CHumanHyperglycemiaHypertensionIn SituIn VitroInflammationInflammatoryInvestigationKnowledgeLeadLosartanMediatingMemoryMetabolicMethodsMolecular ConformationMorbidity - disease rateMusPatientsPharmaceutical PreparationsPhenotypePlayProductionRNAReceptor, Angiotensin, Type 1RoleSignal TransductionSmooth Muscle MyocytesStimulusSwitch GenesSynthetic GenesTechnologyTestingTranscriptional RegulationType 2 diabeticUntranslated RNAValidationVascular DiseasesVascular Smooth MuscleXCL1 genecell behaviorcell typediabetes managementdiabeticdiabetic cardiomyopathyepigenetic memoryepigenomeepigenomicsgenome-widegenomic locusglycemic controlimprovedin vivoin vivo Modelinhibitor/antagonistinnovationinsightmacrophagemethylomemigrationmortalitymultiple omicsnew therapeutic targetnovelnovel therapeuticsprogramssingle cell sequencingtherapeutic targettranscription factortranscriptometranscriptome sequencingtranscriptomicsvascular smooth muscle cell proliferation
项目摘要
SUMMARY: Vascular smooth muscle cells (VSMCs) in the blood vessel wall play pivotal roles in cardiovascular
disease (CVD; e.g., hypertension), which affects ~48% of US adults, and which is significantly accelerated by
diabetes (DCVD). When stimulated by factors like diabetes and the growth factor Angiotensin II (AngII), mature
VSMCs de-differentiate through “phenotypic switching” (Phe-sw) via dysregulation of "contractile" and "synthetic”
genes, resulting in increased VSMC proliferation, migration, inflammation, and extracellular matrix (ECM)
production. In the previous funding cycles, we unraveled the first functional roles for AngII-regulated long
noncoding RNAs and (super-)enhancers (a key epigenetic regulatory layer) in VSMCs. Our overall objective in
this renewal is to elucidate the mechanisms regulating diabetes- and AngII-induced VSMC Phe-sw at the
epigenome and single-cell (sc) level and how these mechanisms establish vascular metabolic memory (in which
prior hyperglycemia/AngII exposure leads to persistent long-term DCVD despite subsequent glucose
normalization). We will use state-of-the-art multi-omics and sc-sequencing (seq) approaches to decipher VSMC
behavior in DCVD and metabolic memory and identify new drug targets. Our hypothesis is that diabetic
conditions and AngII coordinately re-program the VSMC transcriptome and epigenome, which lead to persistent
dysregulation of genes promoting Phe-sw to unique cellular states underlying VSMC dysfunction and accelerated
DCVD. This hypothesis is supported by extensive new preliminary data that show: i) a diabetic state augments
AngII actions and promotes VSMC proliferation and Phe-sw gene profiles, which persist even after glucose
normalization; ii) DNA methylation is decreased, and chromatin accessibility is increased at key upregulated
ECM and inflammatory genes in VSMCs from diabetic mice, even after culture in normal glucose; iii) new cell
clusters indicative of Phe-sw occur in aortas of Ang II-infused mice, identified using integrated scRNA- and
scATAC-seq; iv) diabetic stimuli induce 3D chromatin changes in vascular cells, seen using chromatin
conformation assays. We will test our hypothesis in 3 specific aims: 1) Define diabetes-induced transcriptomic
and epigenomic changes [AngII-(in)dependent] in VSMCs at Phe-sw-related genes, and the memory of their
persistent dysregulation after glucose normalization in vitro; 2) Elucidate the de-differentiated VSMC subtypes
and their functions in diabetes- and AngII-induced Phe-sw in arteries, and their persistence after glucose
normalization in vivo, using scRNA-seq and scATAC-seq; and 3) Determine the translational potential for
reversing DCVD and vascular memory by targeting candidate genes/loci mediating diabetes- and AngII-induced
VSMC Phe-sw. This innovative study, using cutting-edge technologies and functional in vivo models, will provide
novel insights into VSMC regulatory networks and epigenetic memory of diabetic vasculopathy. This knowledge
has the potential to inform development of much-needed new therapies, especially for patients not responding
well to currently available diabetes drugs and AngII blockers, with far-reaching clinical implications for DCVD.
血管平滑肌细胞(VSMC)在心血管系统中起着重要的作用。
疾病(CVD;例如,高血压),影响约48%的美国成年人,并显著加速
糖尿病(DCVD)。当受到糖尿病和生长因子血管紧张素II(AngII)等因素的刺激时,
VSMC通过“收缩”和“合成”的调节异常通过“表型转换”(Phe-sw)去分化
基因,导致VSMC增殖、迁移、炎症和细胞外基质(ECM)增加
生产在之前的融资周期中,我们揭示了AngII监管的长期融资的第一个功能角色,
非编码RNA和(超级)增强子(一个关键的表观遗传调控层)。我们的总体目标是
这一更新旨在阐明糖尿病和AngII诱导的VSMC Phe-sw的调节机制,
表观基因组和单细胞(sc)水平以及这些机制如何建立血管代谢记忆(其中
既往高血糖/AngII暴露导致持续性长期DCVD,尽管随后血糖
标准化)。我们将使用最先进的多组学和SC测序(seq)方法来破译VSMC
DCVD和代谢记忆中的行为,并确定新的药物靶点。我们假设糖尿病患者
条件和AngII协调地重新编程VSMC转录组和表观基因组,这导致持续的
促进Phe-sw进入独特细胞状态的基因失调,是VSMC功能障碍的基础,
DCVD。这一假设得到了广泛的新的初步数据的支持,这些数据表明:i)糖尿病状态增加
AngII作用并促进VSMC增殖和Phe-sw基因谱,即使在葡萄糖
正常化; ii)DNA甲基化降低,并且在关键上调位点染色质可及性增加。
来自糖尿病小鼠的VSMC中的ECM和炎症基因,即使在正常葡萄糖中培养后; iii)新细胞
指示Phe-sw的簇出现在血管紧张素II输注小鼠的动脉中,使用整合的scRNA和
scATAC-seq; iv)糖尿病刺激诱导血管细胞中的3D染色质变化,使用染色质
构象分析我们将在3个具体目标中检验我们的假设:1)定义糖尿病诱导的转录组学
和VSMCs中Phe-sw相关基因的表观基因组变化[AngII-(in)依赖性],以及它们的记忆
体外血糖正常化后持续失调; 2)阐明去分化VSMC亚型
以及它们在糖尿病和AngII诱导的动脉中Phe-sw的功能,以及它们在葡萄糖
使用scRNA-seq和scATAC-seq进行体内标准化;以及3)确定
通过靶向介导糖尿病和AngII诱导的DCVD和血管记忆的候选基因/位点来逆转DCVD和血管记忆
VSMC Phe-sw。这项创新性研究,使用尖端技术和功能性体内模型,将提供
对VSMC调控网络和糖尿病血管病变的表观遗传记忆的新见解。这些知识
有可能为急需的新疗法的开发提供信息,特别是对于没有反应的患者
以及目前可用的糖尿病药物和血管紧张素II受体阻滞剂,具有深远的临床意义的DCVD。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhen Bouman Chen其他文献
Biomimetic nanodrug targets inflammation and suppresses YAP/TAZ to ameliorate atherosclerosis
- DOI:
10.1016/j.biomaterials.2024.122505 - 发表时间:
2024-04-01 - 期刊:
- 影响因子:
- 作者:
Hui-Chun Huang;Ting-Yun Wang;Joshua Rousseau;Mark Orlando;Michelle Mungaray;Chamonix Michaud;Christopher Plaisier;Zhen Bouman Chen;Kuei-Chun Wang - 通讯作者:
Kuei-Chun Wang
Role of long noncoding RNAs in diabetes-associated peripheral arterial disease
- DOI:
10.1186/s12933-024-02327-7 - 发表时间:
2024-07-24 - 期刊:
- 影响因子:10.600
- 作者:
Alonso Tapia;Xuejing Liu;Naseeb Kaur Malhi;Dongqiang Yuan;Muxi Chen;Kevin W. Southerland;Yingjun Luo;Zhen Bouman Chen - 通讯作者:
Zhen Bouman Chen
Endotheliopathy in the metabolic syndrome: Mechanisms and clinical implications
代谢综合征中的内皮病变:机制与临床意义
- DOI:
10.1016/j.pharmthera.2023.108372 - 发表时间:
2023-04-01 - 期刊:
- 影响因子:12.500
- 作者:
Kunimaro Furuta;Xiaofang Tang;Shahidul Islam;Alonso Tapia;Zhen Bouman Chen;Samar H. Ibrahim - 通讯作者:
Samar H. Ibrahim
Zhen Bouman Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhen Bouman Chen', 18)}}的其他基金
Long non-coding RNA-mediated chromatin remodeling in angiogenesis
血管生成中长非编码RNA介导的染色质重塑
- 批准号:
10454320 - 财政年份:2019
- 资助金额:
$ 70.39万 - 项目类别:
Long non-coding RNA-mediated chromatin remodeling in angiogenesis
血管生成中长非编码RNA介导的染色质重塑
- 批准号:
10208946 - 财政年份:2019
- 资助金额:
$ 70.39万 - 项目类别:
Long non-coding RNA-mediated chromatin remodeling in angiogenesis
血管生成中长非编码RNA介导的染色质重塑
- 批准号:
10661025 - 财政年份:2019
- 资助金额:
$ 70.39万 - 项目类别:
Hypoxia-Suppressed Dicer and AGO1 Promote Angiogenesis
缺氧抑制 Dicer 和 AGO1 促进血管生成
- 批准号:
9377179 - 财政年份:2017
- 资助金额:
$ 70.39万 - 项目类别:
Hypoxia-Suppressed Dicer and AGO1 Promote Angiogenesis
缺氧抑制 Dicer 和 AGO1 促进血管生成
- 批准号:
8678312 - 财政年份:2014
- 资助金额:
$ 70.39万 - 项目类别:
Hypoxia-Suppressed Dicer and AGO1 Promote Angiogenesis
缺氧抑制 Dicer 和 AGO1 促进血管生成
- 批准号:
8831728 - 财政年份:2014
- 资助金额:
$ 70.39万 - 项目类别:
Transcriptional Regulation by Angiotensin II in Vascular Smooth Muscle Cells
血管紧张素 II 在血管平滑肌细胞中的转录调节
- 批准号:
10458055 - 财政年份:2011
- 资助金额:
$ 70.39万 - 项目类别:
Transcriptional Regulation by Angiotensin II in Vascular Smooth Muscle Cells
血管紧张素 II 在血管平滑肌细胞中的转录调节
- 批准号:
10606576 - 财政年份:2011
- 资助金额:
$ 70.39万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 70.39万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 70.39万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 70.39万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 70.39万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 70.39万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 70.39万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 70.39万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 70.39万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 70.39万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 70.39万 - 项目类别:
Research Grant