Transcriptional Regulation by Angiotensin II in Vascular Smooth Muscle Cells
血管紧张素 II 在血管平滑肌细胞中的转录调节
基本信息
- 批准号:10606576
- 负责人:
- 金额:$ 70.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-01-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalATAC-seqAccelerationAdultAffectAngiotensin IIAortaArteriesAtherosclerosisBioinformaticsBiological AssayBlood VesselsCRISPR/Cas technologyCandidate Disease GeneCardiovascular DiseasesCell SeparationCellsChromatinClinicalComplications of Diabetes MellitusDNADNA MethylationDataDevelopmentDiabetes MellitusDiabetic mouseEnhancersEpigenetic ProcessExtracellular MatrixFibroblastsFunctional disorderFundingGenesGeneticGenomeGlucoseGrowth FactorHealthcareHi-CHumanHyperglycemiaHypertensionIn SituIn VitroInflammationInflammatoryInvestigationKnowledgeLosartanMacrophageMapsMediatingMemoryMetabolicMethodsMolecular ConformationMorbidity - disease rateMusPatientsPharmaceutical PreparationsPhenotypePlayProductionRNAReceptor, Angiotensin, Type 1RoleSignal TransductionSmooth Muscle MyocytesStimulusSwitch GenesSynthetic GenesTechnologyTestingTranscriptional RegulationType 2 diabeticUntranslated RNAValidationVascular DiseasesVascular Smooth Musclecell behaviorcell dedifferentiationcell typedb/db mousediabetes managementdiabeticdiabetic cardiomyopathyepigenetic memoryepigenomeepigenomicsgenome-widegenomic locusglycemic controlimprovedin vivoin vivo Modelinhibitorinnovationinsightmethylomemigrationmortalitymultiple omicsnew therapeutic targetnovelnovel therapeuticsprogramssingle cell sequencingsingle-cell RNA sequencingtherapeutic targettranscription factortranscriptometranscriptome sequencingtranscriptomicstranslational potentialvascular smooth muscle cell proliferation
项目摘要
SUMMARY: Vascular smooth muscle cells (VSMCs) in the blood vessel wall play pivotal roles in cardiovascular
disease (CVD; e.g., hypertension), which affects ~48% of US adults, and which is significantly accelerated by
diabetes (DCVD). When stimulated by factors like diabetes and the growth factor Angiotensin II (AngII), mature
VSMCs de-differentiate through “phenotypic switching” (Phe-sw) via dysregulation of "contractile" and "synthetic”
genes, resulting in increased VSMC proliferation, migration, inflammation, and extracellular matrix (ECM)
production. In the previous funding cycles, we unraveled the first functional roles for AngII-regulated long
noncoding RNAs and (super-)enhancers (a key epigenetic regulatory layer) in VSMCs. Our overall objective in
this renewal is to elucidate the mechanisms regulating diabetes- and AngII-induced VSMC Phe-sw at the
epigenome and single-cell (sc) level and how these mechanisms establish vascular metabolic memory (in which
prior hyperglycemia/AngII exposure leads to persistent long-term DCVD despite subsequent glucose
normalization). We will use state-of-the-art multi-omics and sc-sequencing (seq) approaches to decipher VSMC
behavior in DCVD and metabolic memory and identify new drug targets. Our hypothesis is that diabetic
conditions and AngII coordinately re-program the VSMC transcriptome and epigenome, which lead to persistent
dysregulation of genes promoting Phe-sw to unique cellular states underlying VSMC dysfunction and accelerated
DCVD. This hypothesis is supported by extensive new preliminary data that show: i) a diabetic state augments
AngII actions and promotes VSMC proliferation and Phe-sw gene profiles, which persist even after glucose
normalization; ii) DNA methylation is decreased, and chromatin accessibility is increased at key upregulated
ECM and inflammatory genes in VSMCs from diabetic mice, even after culture in normal glucose; iii) new cell
clusters indicative of Phe-sw occur in aortas of Ang II-infused mice, identified using integrated scRNA- and
scATAC-seq; iv) diabetic stimuli induce 3D chromatin changes in vascular cells, seen using chromatin
conformation assays. We will test our hypothesis in 3 specific aims: 1) Define diabetes-induced transcriptomic
and epigenomic changes [AngII-(in)dependent] in VSMCs at Phe-sw-related genes, and the memory of their
persistent dysregulation after glucose normalization in vitro; 2) Elucidate the de-differentiated VSMC subtypes
and their functions in diabetes- and AngII-induced Phe-sw in arteries, and their persistence after glucose
normalization in vivo, using scRNA-seq and scATAC-seq; and 3) Determine the translational potential for
reversing DCVD and vascular memory by targeting candidate genes/loci mediating diabetes- and AngII-induced
VSMC Phe-sw. This innovative study, using cutting-edge technologies and functional in vivo models, will provide
novel insights into VSMC regulatory networks and epigenetic memory of diabetic vasculopathy. This knowledge
has the potential to inform development of much-needed new therapies, especially for patients not responding
well to currently available diabetes drugs and AngII blockers, with far-reaching clinical implications for DCVD.
摘要:血管壁中的血管平滑肌细胞 (VSMC) 在心血管疾病中发挥着关键作用
疾病(CVD;例如高血压),影响约 48% 的美国成年人,并且显着加速
糖尿病(DCVD)。当受到糖尿病和生长因子血管紧张素 II (AngII) 等因素的刺激时,成熟
VSMC 通过“收缩”和“合成”失调的“表型转换”(Phe-sw) 去分化
基因,导致 VSMC 增殖、迁移、炎症和细胞外基质 (ECM) 增加
生产。在之前的融资周期中,我们阐明了 AngII 监管的长期基金的第一个功能角色。
VSMC 中的非编码 RNA 和(超级)增强子(关键的表观遗传调控层)。我们的总体目标是
这一更新是为了阐明调节糖尿病和 AngII 诱导的 VSMC Phe-sw 的机制
表观基因组和单细胞(sc)水平以及这些机制如何建立血管代谢记忆(其中
尽管随后出现血糖升高,但先前的高血糖/AngII 暴露仍会导致持续性长期 DCVD
正常化)。我们将使用最先进的多组学和 SC 测序 (seq) 方法来破译 VSMC
DCVD 和代谢记忆的行为并确定新的药物靶点。我们的假设是糖尿病
条件和 AngII 协调重新编程 VSMC 转录组和表观基因组,从而导致持久的
基因失调促进 Phe-sw 进入 VSMC 功能障碍的独特细胞状态并加速
DCVD.这一假设得到了广泛的新初步数据的支持,这些数据表明:i)糖尿病状态会增强
AngII 作用并促进 VSMC 增殖和 Phe-sw 基因谱,即使在葡萄糖后仍持续存在
正常化; ii) DNA 甲基化减少,关键上调的染色质可及性增加
糖尿病小鼠 VSMC 中的 ECM 和炎症基因,即使在正常葡萄糖培养后也是如此; iii) 新细胞
指示 Phe-sw 的簇出现在 Ang II 输注小鼠的主动脉中,使用整合的 scRNA 和
scATAC-seq; iv) 糖尿病刺激诱导血管细胞中的 3D 染色质变化,通过染色质观察到
构象测定。我们将在 3 个具体目标上检验我们的假设:1) 定义糖尿病诱导的转录组学
VSMC 中 Phe-sw 相关基因的表观基因组变化[AngII-(in)依赖性],以及它们的记忆
体外血糖正常化后持续失调; 2) 阐明去分化的VSMC亚型
及其在糖尿病和 AngII 诱导的动脉中 Phe-sw 中的功能,以及葡萄糖后其持久性
使用 scRNA-seq 和 scATAC-seq 进行体内标准化; 3) 确定转化潜力
通过靶向介导糖尿病和血管紧张素II诱导的候选基因/位点来逆转 DCVD 和血管记忆
VSMC Phe-sw。这项创新研究利用尖端技术和功能性体内模型,将提供
对 VSMC 调节网络和糖尿病血管病变表观遗传记忆的新见解。这些知识
有潜力为急需的新疗法的开发提供信息,特别是对于没有反应的患者
与目前可用的糖尿病药物和 AngII 阻滞剂相比,对 DCVD 具有深远的临床意义。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Long non-coding RNA lncMGC mediates the expression of TGF-β-induced genes in renal cells via nucleosome remodelers.
- DOI:10.3389/fmolb.2023.1204124
- 发表时间:2023
- 期刊:
- 影响因子:5
- 作者:
- 通讯作者:
Pro-inflammatory role of microrna-200 in vascular smooth muscle cells from diabetic mice.
- DOI:10.1161/atvbaha.111.241109
- 发表时间:2012-03
- 期刊:
- 影响因子:0
- 作者:Reddy MA;Jin W;Villeneuve L;Wang M;Lanting L;Todorov I;Kato M;Natarajan R
- 通讯作者:Natarajan R
Regulation of inflammatory phenotype in macrophages by a diabetes-induced long noncoding RNA.
- DOI:10.2337/db14-0298
- 发表时间:2014-12
- 期刊:
- 影响因子:7.7
- 作者:Reddy MA;Chen Z;Park JT;Wang M;Lanting L;Zhang Q;Bhatt K;Leung A;Wu X;Putta S;Sætrom P;Devaraj S;Natarajan R
- 通讯作者:Natarajan R
Novel long noncoding RNAs are regulated by angiotensin II in vascular smooth muscle cells.
- DOI:10.1161/circresaha.112.300849
- 发表时间:2013-07-19
- 期刊:
- 影响因子:20.1
- 作者:Leung A;Trac C;Jin W;Lanting L;Akbany A;Sætrom P;Schones DE;Natarajan R
- 通讯作者:Natarajan R
Diabetes in childhood cancer survivors: emerging concepts in pathophysiology and future directions.
- DOI:10.3389/fmed.2023.1206071
- 发表时间:2023
- 期刊:
- 影响因子:3.9
- 作者:Bhandari, Rusha;Armenian, Saro H.;Mccormack, Shana;Natarajan, Rama;Mostoufi-Moab, Sogol
- 通讯作者:Mostoufi-Moab, Sogol
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhen Bouman Chen其他文献
Biomimetic nanodrug targets inflammation and suppresses YAP/TAZ to ameliorate atherosclerosis
- DOI:
10.1016/j.biomaterials.2024.122505 - 发表时间:
2024-04-01 - 期刊:
- 影响因子:
- 作者:
Hui-Chun Huang;Ting-Yun Wang;Joshua Rousseau;Mark Orlando;Michelle Mungaray;Chamonix Michaud;Christopher Plaisier;Zhen Bouman Chen;Kuei-Chun Wang - 通讯作者:
Kuei-Chun Wang
Role of long noncoding RNAs in diabetes-associated peripheral arterial disease
- DOI:
10.1186/s12933-024-02327-7 - 发表时间:
2024-07-24 - 期刊:
- 影响因子:10.600
- 作者:
Alonso Tapia;Xuejing Liu;Naseeb Kaur Malhi;Dongqiang Yuan;Muxi Chen;Kevin W. Southerland;Yingjun Luo;Zhen Bouman Chen - 通讯作者:
Zhen Bouman Chen
Endotheliopathy in the metabolic syndrome: Mechanisms and clinical implications
代谢综合征中的内皮病变:机制与临床意义
- DOI:
10.1016/j.pharmthera.2023.108372 - 发表时间:
2023-04-01 - 期刊:
- 影响因子:12.500
- 作者:
Kunimaro Furuta;Xiaofang Tang;Shahidul Islam;Alonso Tapia;Zhen Bouman Chen;Samar H. Ibrahim - 通讯作者:
Samar H. Ibrahim
Zhen Bouman Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhen Bouman Chen', 18)}}的其他基金
Long non-coding RNA-mediated chromatin remodeling in angiogenesis
血管生成中长非编码RNA介导的染色质重塑
- 批准号:
10454320 - 财政年份:2019
- 资助金额:
$ 70.39万 - 项目类别:
Long non-coding RNA-mediated chromatin remodeling in angiogenesis
血管生成中长非编码RNA介导的染色质重塑
- 批准号:
10208946 - 财政年份:2019
- 资助金额:
$ 70.39万 - 项目类别:
Long non-coding RNA-mediated chromatin remodeling in angiogenesis
血管生成中长非编码RNA介导的染色质重塑
- 批准号:
10661025 - 财政年份:2019
- 资助金额:
$ 70.39万 - 项目类别:
Hypoxia-Suppressed Dicer and AGO1 Promote Angiogenesis
缺氧抑制 Dicer 和 AGO1 促进血管生成
- 批准号:
9377179 - 财政年份:2017
- 资助金额:
$ 70.39万 - 项目类别:
Hypoxia-Suppressed Dicer and AGO1 Promote Angiogenesis
缺氧抑制 Dicer 和 AGO1 促进血管生成
- 批准号:
8678312 - 财政年份:2014
- 资助金额:
$ 70.39万 - 项目类别:
Hypoxia-Suppressed Dicer and AGO1 Promote Angiogenesis
缺氧抑制 Dicer 和 AGO1 促进血管生成
- 批准号:
8831728 - 财政年份:2014
- 资助金额:
$ 70.39万 - 项目类别:
Transcriptional Regulation by Angiotensin II in Vascular Smooth Muscle Cells
血管紧张素 II 在血管平滑肌细胞中的转录调节
- 批准号:
10458055 - 财政年份:2011
- 资助金额:
$ 70.39万 - 项目类别:
Transcriptional Regulation by Angiotensin II in Vascular Smooth Muscle Cells
血管紧张素 II 在血管平滑肌细胞中的转录调节
- 批准号:
10297721 - 财政年份:2011
- 资助金额:
$ 70.39万 - 项目类别:
相似国自然基金
基于ATAC-seq与DNA甲基化测序探究染色质可及性对莲两生态型地下茎适应性分化的作用机制
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
利用ATAC-seq联合RNA-seq分析TOP2A介导的HCC肿瘤细胞迁移侵
袭的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向图神经网络ATAC-seq模体识别的最小间隔单细胞聚类研究
- 批准号:62302218
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于ATAC-seq策略挖掘穿心莲基因组中调控穿心莲内酯合成的增强子
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于单细胞ATAC-seq技术的C4光合调控分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于ATAC-seq技术研究交叉反应物质197调控TFEB介导的自噬抑制子宫内膜异位症侵袭的分子机制
- 批准号:82001520
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
靶向治疗动态调控肺癌细胞DNA可接近性的ATAC-seq分析
- 批准号:81802809
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
运用ATAC-seq技术分析染色质可接近性对犏牛初级精母细胞基因表达的调控作用
- 批准号:31802046
- 批准年份:2018
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
基于ATAC-seq和RNA-seq研究CWIN调控采后番茄果实耐冷性作用机制
- 批准号:31801915
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于ATAC-seq高精度预测染色质相互作用的新方法和基于增强现实的3D基因组数据可视化
- 批准号:31871331
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
相似海外基金
Project #2 Integrated single-nucleus multi-omics (ATAC-seq+RNA-seq or chromatin accessibility + RNA-seq) of human TGs
项目
- 批准号:
10806548 - 财政年份:2023
- 资助金额:
$ 70.39万 - 项目类别:
A transposase system for integrative ChIP-exo and ATAC-seq analysis at single-cell resolution
用于单细胞分辨率综合 ChIP-exo 和 ATAC-seq 分析的转座酶系统
- 批准号:
10210424 - 财政年份:2018
- 资助金额:
$ 70.39万 - 项目类别:
EAPSI: Developing Single Nucleus ATAC-seq to Map the Ageing Epigenome
EAPSI:开发单核 ATAC-seq 来绘制衰老表观基因组图谱
- 批准号:
1714070 - 财政年份:2017
- 资助金额:
$ 70.39万 - 项目类别:
Fellowship Award
A cloud-based learning module to analyze ATAC-seq and single cell ATAC-seq data
基于云的学习模块,用于分析 ATAC-seq 和单细胞 ATAC-seq 数据
- 批准号:
10558379 - 财政年份:2001
- 资助金额:
$ 70.39万 - 项目类别: