Vascularization of critical-sized craniomaxillofacial defects
临界尺寸颅颌面缺损的血管化
基本信息
- 批准号:10427079
- 负责人:
- 金额:$ 36.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-02 至 2024-09-01
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAcetatesAlveolarAnimalsAreaBiologicalBioreactorsBloodBlood VesselsBolus InfusionBone RegenerationCellsCessation of lifeDefectDiagnostic radiologic examinationDrug Delivery SystemsElementsEncapsulatedEnvironmentEquilibriumFailureGrowth FactorHistologicHumanHuman bodyHybridsHydrophobicityHydroxidesImmobilizationIn VitroInjectionsInternationalLegal patentLipidsMagnesiumMandibleMechanicsMessenger RNAMethodsMicellesMicrofluidicsModalityModelingNew ZealandOryctolagus cuniculusOsteogenesisOxygenPenetrationPerfusionPolymersPolyvinylsPreparationProceduresProcessProductionPropertyProteinsQuantitative Reverse Transcriptase PCRReactionReproducibilityResolutionSafetySamplingSecureSkeletonSolidStructureSurfaceTherapeuticTimeTissuesVEGFA geneVascular Endothelial Growth Factor CVascular Endothelial Growth FactorsVascularizationWestern Blottingalveolar boneangiogenesisbaseblood vessel developmentcraniomaxillofacialdesignhealingin vivomechanical loadmechanical propertiesmicroCTneovascularizationnovelparticlepreventrelease factorscaffoldside effecttumortumorigenic
项目摘要
Project Summary
Lack of proper vascularization leads to the ultimate failure in treatment of critical-sized craniomaxillofacial
defects. The large size of the defect obstructs penetration of blood components from the surrounding
environment into the inner parts of the defect, and thus hinders vascularity. In such situations, vascular
endothelial growth factor (VEGF) is the most effective factor that can reestablish the oxygen supply to tissues.
While applying external VEGF is a key means for blood vessel formation in critical-sized defects, its slight
uncontrolled administration is risky and can be tumorigenic. Thus, conventional methods cannot be used for
encapsulation and delivery of VEGF. In this proposal, we will develop a new on-chip method for delivery of VEGF
with precise and sustained release capabilities using a microfluidic platform. Our novel design allows making
monodispersed particles in a highly controllable and reproducible manner, providing us with the ability to fine-
tune the size, microstructure, loading capacity and release rate of particles, in addition to balancing the pH and
maintaining the VEGF bioactivity. Release of VEGF must not be only controlled and sustained, but also highly
localized in the region of the defect as moving the VEGF-loaded particles into unwanted areas is not favorable
and can be risky. Thus, in another strategy, the VEGF-loaded particles will be immobilized onto a new 3D-printed
scaffold specifically designed for critical-sized defects. The design of this novel scaffold (filed for patent) is
inspired by reinforced concrete, in which reinforcing Rebars are embedded in the host material to enhance the
mechanical properties of the scaffold (100-375 times improvement). In other words, it is a hybrid scaffold, made
of two components: 1) Skeleton Rebars: non-porous and slowly-biodegradable constituent undertaking
mechanical necessities of the scaffold, and 2) Host Component: porous and rapidly-biodegradable constituent
undertaking biological necessities of the scaffold. Although the mechanical strength of Rebars is the property
that makes the scaffold appropriate for critical-sized defects, another functionality of the Rebar, which is its slow
degradability (6 months), makes the design a perfect choice for the VEGF delivery purpose. Rebars will provide
us with the opportunity to immobilize VEGF-loaded particles on a solid surface and not let the particles move
elsewhere. The immobilization process itself is a new method developed in our lab that can firmly attach these
particles to the rebars of the scaffolds. The VEGF-loaded scaffold will undergo a detailed in vitro analysis and
release adjustment inside a bioreactor, which can mimic the body condition. The VEGF release profiles will be
adjusted to reach the target value (1.2 ng/ml per day per cm3 of scaffold), and the comprehensive in vitro analyses
will evaluate the osteogenesis and angiogenesis characters of the construct. The optimized VEGF-loaded scaffold
will undergo a detailed in vivo study using critical-sized alveolar bone defects in New Zealand white rabbits. The
new bone formation and angiogenesis will be fully studied to assess the functionality of the VEGF-loaded scaffold
in comparison with a VEGF-free scaffold, as well as defects treated with a current therapeutic modality.
项目摘要
缺乏适当的血管化导致治疗临界尺寸颅颌面畸形的最终失败
缺陷缺损的大尺寸阻碍了血液成分从周围渗透
环境进入缺损的内部,从而阻碍血管形成。在这种情况下,血管
内皮生长因子(VEGF)是能够重建组织氧供应的最有效的因子。
虽然应用外部VEGF是在临界尺寸缺损中形成血管的关键手段,但其轻微的
不受控制的给药是有风险的并且可能是致瘤的。因此,常规方法不能用于
封装和递送VEGF。在这项提案中,我们将开发一种新的芯片上方法来递送VEGF
使用微流体平台具有精确和持续的释放能力。我们新颖的设计使得
以高度可控和可重复的方式生产单分散颗粒,为我们提供精细的
调整颗粒的大小、微观结构、负载能力和释放速率,以及平衡pH值和
维持VEGF的生物活性。VEGF的释放不仅必须受到控制和持续,而且还必须高度依赖于血管内皮细胞。
当将加载VEGF的颗粒移动到不需要的区域中时,
而且可能有风险因此,在另一种策略中,负载VEGF的颗粒将被固定在新的3D打印的载体上。
专门为临界尺寸缺陷设计的支架。这种新型支架的设计(已申请专利)
受钢筋混凝土的启发,其中钢筋被嵌入到主体材料中,以增强
支架的机械性能(提高100-375倍)。换句话说,它是一种混合支架,
由两部分组成:1)骨架钢筋:无孔和缓慢生物降解的成分承担
支架的机械必要性,和2)主体成分:多孔和快速生物降解的成分
承担支架的生物必需品。虽然钢筋的机械强度是
这使得支架适合于临界尺寸的缺陷,这是Rebar的另一个功能,
可降解性(6个月),使得该设计成为VEGF递送目的的完美选择。钢筋将提供
让我们有机会将载有VEGF的颗粒固定在固体表面上,
其他地方固定过程本身是我们实验室开发的一种新方法,可以牢固地将这些
颗粒附着在支架的钢筋上。加载VEGF的支架将进行详细的体外分析,
在生物反应器内释放调节,这可以模拟身体状况。VEGF释放曲线将是
调整以达到目标值(1.2 ng/ml/天/cm 3支架),并进行全面的体外分析
将评估构建体的成骨和血管生成特征。优化的VEGF负载支架
将使用新西兰白色兔的临界尺寸牙槽骨缺损进行详细的体内研究。的
新骨形成和血管生成将被充分研究,以评估VEGF负载支架的功能
与不含VEGF的支架相比,以及用目前的治疗方式治疗的缺陷。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structural parameters of nanoparticles affecting their toxicity for biomedical applications: a review.
- DOI:10.1007/s11051-023-05690-w
- 发表时间:2023
- 期刊:
- 影响因子:2.5
- 作者:Abbasi, Reza;Shineh, Ghazal;Mobaraki, Mohammadmahdi;Doughty, Sarah;Tayebi, Lobat
- 通讯作者:Tayebi, Lobat
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lobat Tayebi其他文献
Lobat Tayebi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lobat Tayebi', 18)}}的其他基金
Synthetic osteo-odonto-keratoprosthesis (OOKP, Tooth-in-Eye surgery)
合成骨齿角膜假体(OOKP,牙眼手术)
- 批准号:
10722533 - 财政年份:2023
- 资助金额:
$ 36.26万 - 项目类别:
Supplement: Development of an Integrated 3D Human Osteo-Mucosal Model
补充:集成 3D 人体骨粘膜模型的开发
- 批准号:
10403365 - 财政年份:2021
- 资助金额:
$ 36.26万 - 项目类别:
Development of an Integrated 3D Human Osteo-Mucosal Model
集成 3D 人体骨粘膜模型的开发
- 批准号:
10059378 - 财政年份:2019
- 资助金额:
$ 36.26万 - 项目类别:
Development of an Integrated 3D Human Osteo-Mucosal Model
集成 3D 人体骨粘膜模型的开发
- 批准号:
10224467 - 财政年份:2018
- 资助金额:
$ 36.26万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 36.26万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 36.26万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 36.26万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 36.26万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 36.26万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 36.26万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 36.26万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 36.26万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 36.26万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 36.26万 - 项目类别:
Standard Grant