Obesity promoting protein malonylation and chondrocyte metabolic dysfunction in osteoarthritis development
肥胖促进骨关节炎发展中的蛋白质丙二酰化和软骨细胞代谢功能障碍
基本信息
- 批准号:10424671
- 负责人:
- 金额:$ 45.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:ADAMTSAcetylationAdultAffectAgeAge-YearsAgingAreaBindingBiological AssayBiomedical ResearchBloodBone SpurCarbonCartilageCellsChondrocytesCollagen Type IIContralateralDataDegenerative polyarthritisDevelopmentDiseaseElderlyEnzyme-Linked Immunosorbent AssayEnzymesEpitopesFutureGenesGenetic ModelsGenus HippocampusGoalsHandHeadHigh Fat DietHumanImpairmentIn VitroIncidenceIndividualInflammationInflammatoryInterleukin-1 betaJointsKnee OsteoarthritisKnowledgeLeadLinkLiteratureLongevityMass FragmentographyMatrix MetalloproteinasesMeasuresMediatingMetabolicMetabolic ControlMetabolic dysfunctionMetabolismMethodsMissionMusObese MiceObesityObesity EpidemicOhioOvernutritionOxygen ConsumptionPathologyPharmaceutical PreparationsPhenotypePlayPost-Translational Protein ProcessingPrevalenceProcessProteinsPublic HealthRegulator GenesRegulatory PathwayReportingResearchReverse Transcriptase Polymerase Chain ReactionRiskRisk FactorsRoleSerumSignal PathwaySirtuinsStressStudentsSynovitisTestingTherapeuticTissuesTrainingUnited States National Institutes of HealthUniversitiesWorkadverse outcomeaggrecanbasecartilage degradationcostdiet-induced obesitydisabilityeffective interventiongene synthesisgraduate studentin vivojoint destructionjoint loadingmechanical loadmouse geneticsmouse modelnew therapeutic targetnovelobesity biomarkerspreventprogramspublic health relevancestudent mentoringtheoriestissue procollagenaseundergraduate student
项目摘要
Project Summary/Abstract
Most older adults (~70 years of age) have some signs of osteoarthritis (OA) in their joints. Development of OA
can also be accelerated by ~20 years in individuals who are obese. This phenomenon does not stem solely from
greater mechanical loading, obesity also increases OA risk in non-weight-bearing hand joints. Obesity can
produce adverse outcomes in part because it alters metabolism at both a whole-body level and a cellular level.
However, it is unknown how joint cells change metabolism during aging and obesity. Identifying metabolic
changes in joint cells during aging and obesity could inform effective interventions and therapeutic strategies
that reduce the incidence and impact of OA, especially in the context of an increasing prevalence of obesity and
extended lifespans. This project will investigate a new theory of cell metabolic damage called "carbon stress",
which describes how over-nutrition causes metabolic byproducts to accumulate in cells, bind to metabolic
proteins, and decrease protein activity. We hypothesize that obesity-associated ‘carbon stress’ also occurs in
cartilage (chondrocytes) and plays an important role in OA development. Our previous work shows that one type
of carbon stress associated with protein post-translational malonylation (MaK) is highly elevated in cartilage
during obesity. We also showed that Sirt5, an enzyme that can remove MaK, declines during aging, suggesting
that cellular defenses against carbon stress are compromised during aging. Yet how do MaK and its regulatory
pathways contribute to cellular metabolism in chondrocytes? Guided by our preliminary data and the literature,
we will investigate this question via two specific aims: Aim 1. To test the hypothesis that obesity promotes MaK
to accelerate OA development; Aim 2. To determine the mechanisms by which Sirt5-MaK regulates cartilage
degeneration under obesity associated pro-inflammatory condition. Well-established mouse models of diet-
induced obesity and OA will be used in combination with genetically modified mouse models that allow
conditional deletion of MaK regulatory genes in cartilage. Mouse OA phenotyping will be used to examine the
consequences of enhancing or inhibiting MaK on OA pathology. In vivo and in vitro metabolic profiling methods
will be leveraged to determine the effects of manipulating MaK on chondrocyte cellular metabolism. Successful
completion of this research is expected to provide more comprehensive understanding of how obesity and aging
damage metabolism in joint cells and promote OA development, offering the potential to provide new therapeutic
targets for OA treatment. The proposed project will also serve as a perfect vehicle for the PI to continue the on-
going endeavor of mentoring students and engaging students in biomedical research.
项目概要/摘要
大多数老年人(约 70 岁)的关节都有一些骨关节炎 (OA) 的迹象。办公自动化的发展
肥胖者的年龄也可加快约 20 年。这一现象不仅仅源于
更大的机械负荷,肥胖也会增加非负重手关节的骨关节炎风险。肥胖可以
产生不良后果的部分原因是它改变了全身水平和细胞水平的新陈代谢。
然而,尚不清楚关节细胞在衰老和肥胖期间如何改变新陈代谢。识别代谢
衰老和肥胖期间关节细胞的变化可以为有效的干预措施和治疗策略提供信息
减少 OA 的发生率和影响,特别是在肥胖和肥胖患病率不断增加的背景下
延长使用寿命。该项目将研究一种称为“碳应激”的细胞代谢损伤新理论,
它描述了营养过剩如何导致代谢副产物在细胞中积累,并与代谢结合
蛋白质,并降低蛋白质活性。我们假设与肥胖相关的“碳压力”也发生在
软骨(软骨细胞)在 OA 发展中起着重要作用。我们之前的工作表明,一种类型
与蛋白质翻译后丙二酰化 (MaK) 相关的碳应激在软骨中高度升高
肥胖期间。我们还发现 Sirt5(一种可以去除 MaK 的酶)在衰老过程中会下降,这表明
细胞对碳应激的防御在衰老过程中受到损害。然而 MaK 及其监管机构如何
途径有助于软骨细胞的细胞代谢?在我们的初步数据和文献的指导下,
我们将通过两个具体目标来研究这个问题: 目标 1. 检验肥胖促进 MaK 的假设
加快OA发展;目标 2. 确定 Sirt5-MaK 调节软骨的机制
肥胖相关促炎症条件下的退化。完善的饮食小鼠模型
诱导性肥胖和 OA 将与转基因小鼠模型结合使用,从而允许
有条件地删除软骨中的 MaK 调节基因。小鼠 OA 表型分析将用于检查
增强或抑制 MaK 对 OA 病理学的影响。体内和体外代谢分析方法
将用于确定操纵 MaK 对软骨细胞代谢的影响。成功的
这项研究的完成预计将更全面地了解肥胖与衰老之间的关系
损害关节细胞的代谢并促进 OA 的发展,有望提供新的治疗方法
OA 治疗的目标。拟议的项目也将作为 PI 继续进行研究的完美工具。
持续努力指导学生并让学生参与生物医学研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shouan Zhu其他文献
Shouan Zhu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shouan Zhu', 18)}}的其他基金
Growth hormone regulating chondrocyte metabolism for osteoarthritis development
生长激素调节软骨细胞代谢促进骨关节炎的发展
- 批准号:
10730575 - 财政年份:2023
- 资助金额:
$ 45.3万 - 项目类别:
相似海外基金
Investigating the functions of histone acetylation in genome organization and leukemogenesis
研究组蛋白乙酰化在基因组组织和白血病发生中的功能
- 批准号:
EP/Y000331/1 - 财政年份:2023
- 资助金额:
$ 45.3万 - 项目类别:
Research Grant
Gene Modulation of Acetylation Modifiers to Reveal Regulatory Links to Human Cardiac Electromechanics
乙酰化修饰剂的基因调节揭示与人类心脏机电的调节联系
- 批准号:
10677295 - 财政年份:2023
- 资助金额:
$ 45.3万 - 项目类别:
Novel roles of PDK2 in heart failure: Regulation of mitochondrial nuclear crosstalk via metabolic regulation and histone acetylation
PDK2 在心力衰竭中的新作用:通过代谢调节和组蛋白乙酰化调节线粒体核串扰
- 批准号:
10635599 - 财政年份:2023
- 资助金额:
$ 45.3万 - 项目类别:
Regulation of hepatic lysine N-acetylation by cysteine proximity due to alcohol toxicity
酒精毒性导致的半胱氨酸接近对肝脏赖氨酸 N-乙酰化的调节
- 批准号:
10752320 - 财政年份:2023
- 资助金额:
$ 45.3万 - 项目类别:
Histone Acetylation Regulates Microglial Innate Immune Memory
组蛋白乙酰化调节小胶质细胞先天免疫记忆
- 批准号:
478927 - 财政年份:2023
- 资助金额:
$ 45.3万 - 项目类别:
Operating Grants
Dysregulation of Histone Acetylation in Parkinson's Disease
帕金森病中组蛋白乙酰化的失调
- 批准号:
10855703 - 财政年份:2023
- 资助金额:
$ 45.3万 - 项目类别:
Obesity-related hypertension: the contribution of PPAR gamma acetylation and asprosin
肥胖相关高血压:PPAR γ 乙酰化和白脂素的贡献
- 批准号:
10654210 - 财政年份:2023
- 资助金额:
$ 45.3万 - 项目类别:
The role N-terminal acetylation in dilated cardiomyopathy and associated arrhythmia
N-末端乙酰化在扩张型心肌病和相关心律失常中的作用
- 批准号:
10733915 - 财政年份:2023
- 资助金额:
$ 45.3万 - 项目类别:
In vivo tracing of hepatic ethanol metabolism to histone acetylation: role of ACSS2 in alcohol-induced liver injury
肝脏乙醇代谢与组蛋白乙酰化的体内追踪:ACSS2 在酒精性肝损伤中的作用
- 批准号:
10667952 - 财政年份:2023
- 资助金额:
$ 45.3万 - 项目类别:
The function of TWIST1 acetylation in cell fate and tissue development
TWIST1 乙酰化在细胞命运和组织发育中的作用
- 批准号:
10726986 - 财政年份:2023
- 资助金额:
$ 45.3万 - 项目类别:














{{item.name}}会员




