Alternate Emergency Over Dose Response in Chicago
芝加哥的替代紧急剂量反应
基本信息
- 批准号:10425012
- 负责人:
- 金额:$ 20.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-15 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:911 callAddressAlgorithmsAmbulancesAreaAssertivenessAuthorization documentationBuprenorphineCase ManagementCatchment AreaCharacteristicsChicagoCitiesClinical DataCollaborationsCommunicationCommunitiesConsolidated Framework for Implementation ResearchCountyDataData SetDoseEffectivenessEmergency SituationEmergency medical serviceEmergency responseFire - disastersFundingFutureGrantHealthHealth ProfessionalHealth Service AreaIndividualInjecting drug userInterventionInterviewJournalsMachine LearningMedical ExaminersMedical emergencyModelingNeighborhoodsOpioidOutcomeOverdoseParamedical PersonnelParticipantPerformancePersonsPharmaceutical PreparationsPolicePoliciesPopulationPredictive AnalyticsPrevalenceProbabilityProgram EffectivenessPublic HealthPublicationsRandomizedRecoveryResearchResearch DesignResourcesRiskRisk FactorsSafetyServicesSideSignal TransductionSourceSpecialistSystemTechnology TransferTextUniversity resourcesadverse outcomeaustinbasebehavioral healthbrief interventioncare coordinationcommunity based carecomputer codecookingdesignexperiencefollow-uphigh riskhybrid type 1 studyimplementation barriersimplementation facilitatorsimprovedinnovationinsightlongitudinal analysismembermortalityopen sourceoperationopioid overdoseopioid use disorderoutreachoutreach servicesoverdose riskpatient engagementpeerpeer supportpost interventionprescription opioidprocess evaluationprogramsrandom forestresponseservice deliveryservice engagementservice interventionsociodemographicstooltreatment armunstructured data
项目摘要
PROJECT ABSTRACT
Chicago is a national epicenter of opioid overdose (OD) and related harms. Opioid-related Emergency Service
Calls (ORESCs) are critical opportunities for service engagement and intervention. Nationally and in Chicago,
high mortality rates subsequent to non-fatal OD underscore that such opportunities are often missed. Chicago
will pilot two innovative responses to address these challenges. Alternate Immediate Response (AIR) will
provide assertive outreach and engagement, including connecting people with medication opioid use disorder
treatment and other related services. Alternate Immediate Response plus Follow-up (AIR-F) includes AIR,
along with 8 weeks of follow-up services. AIR response teams consisting of a community paramedic and a
peer support specialist/recovery coach will be deployed to provide assertive outreach services, including
developing treatment, safety, and follow-up plans, delivering brief interventions, and providing transport to
pertinent other services. AIR-F engagement will include linkages to follow-up services that promote treatment
retention, including case management, care coordination, and connections to community-based care and
treatment. We propose to use machine learning (ML) to develop a tool to identify individuals at highest risk of
OD and OD-related mortality in order to prioritize service delivery and follow-up services. In particular, we will
develop a random forest (RF) classifier that will combine data from the Chicago Department of Public Health,
the Office of Emergency Management and Communications, Chicago Police and Fire departments, Chicago
Office of Public Safety Administration, and Cook County Medical Examiner’s Office to create an integrated
dataset to trace emergency calls from origination to final disposition. We will also extract data from
unstructured text included in CFD ambulance data. By incorporating multiple large administrative datasets, the
tool will capitalize on diverse sources of “signal,” maximizing prediction accuracy. We will then use our
integrated data to predict individuals at highest risk of subsequent ORESCs, OD, arrest, and other adverse
outcomes. AIR/AIR-F staff will use these indicators along with other clinical data to allocate scarce follow-up
resources. We will use difference-in-differences estimation to compare post-intervention outcomes within the
service area on Chicago’s west side (Humboldt Park, West Garfield Park, and East Garfield Park) to that
observed in contiguous communities (Austin, North Lawndale, South Lawndale, Lower West Side, and West
Town) to gauge the population impact of AIR/AIR-F. Finally, we will conduct qualitative interviews with various
stakeholders to provide additional insight into the pilot and explore how Chicago can better serve at-risk
individuals. To help reduce the prevalence of ORESCs’ and associated mortality, all computer code developed
for this grant will be made available open-source. We will disseminate project findings widely throughout the
policy and scientific communities, including publication in leading scientific journals and policymaker and media
outreach.
项目摘要
芝加哥是阿片类药物过量(OD)和相关危害的国家震中。阿片类药物相关的紧急服务
呼叫(ORESC)是服务参与和干预的关键机会。在全国和芝加哥,
非致命的OD之后的高死亡率强调,通常会错过这种机会。芝加哥
将试用两个创新的回应来应对这些挑战。替代立即响应(空气)将
提供自信的宣传和参与,包括与药物治疗障碍联系人
治疗和其他相关服务。替代立即响应加上随访(AIR-F)包括空气,
由社区护理人员和一个组成的空气响应团队和
同伴支持专家/恢复教练将被部署,以提供自信的外展服务,包括
制定治疗,安全和后续计划,提供简短的干预措施,并提供运输
其他服务。 AIR-F参与度将包括与促进治疗的后续服务联系
保留,包括案件管理,护理协调以及与社区护理的联系
治疗。我们建议使用机器学习(ML)开发一种工具来识别具有最高风险的人
OD和与OD相关的死亡率是为了确定服务交付和随访服务的优先级。特别是,我们会
开发一个随机森林(RF)分类器,该分类器将结合芝加哥公共卫生部的数据,
芝加哥警察和消防部门紧急管理与通讯办公室,芝加哥
公共安全管理办公室和库克县医学检查员办公室,以创建一个综合的
数据集以追踪从起源到最终处置的紧急呼叫。我们还将从中提取数据
CFD救护车数据中包含的非结构化文本。通过合并多个大型管理数据集,
工具将利用“信号”的潜水员来源,最大化预测准确性。然后我们将使用我们的
集成数据以预测随后的ORESC,OD,逮捕和其他广告的最高风险的个人
结果。 Air/Air-F员工将使用这些指标以及其他临床数据来分配稀缺后续行动
资源。我们将使用差异性估计的差异来比较干预后的结果
芝加哥西侧的服务区(洪堡公园,西加菲尔德公园和东加尔菲尔德公园)
在连续的社区中观察到(奥斯汀,北拉恩代尔,南拉恩代尔,下西区和西部
镇)以衡量航空/空气f的人口影响。最后,我们将与各种定性采访
利益相关者提供对飞行员的更多见解,并探索芝加哥如何更好地为处于危险中服务
个人。为了帮助降低ORESC和相关死亡率的流行,所有计算机代码都开发了
对于这笔赠款,将提供开源。我们将在整个过程中广泛传播项目的发现
政策和科学社区,包括在领先的科学期刊,决策者和媒体上出版
外展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HAROLD Alexander POLLACK其他文献
HAROLD Alexander POLLACK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HAROLD Alexander POLLACK', 18)}}的其他基金
Alternate Emergency Over Dose Response in Chicago
芝加哥的替代紧急剂量反应
- 批准号:
10618266 - 财政年份:2022
- 资助金额:
$ 20.5万 - 项目类别:
Predictive Analytics Applied to Integrated Administrative Emergency Response Datasets in Chicago - Resubmission 01
预测分析应用于芝加哥综合行政应急响应数据集 - 重新提交 01
- 批准号:
10200643 - 财政年份:2019
- 资助金额:
$ 20.5万 - 项目类别:
Reducing Opioid Mortality in Illinois (ROMI)
降低伊利诺伊州阿片类药物死亡率 (ROMI)
- 批准号:
10671066 - 财政年份:2019
- 资助金额:
$ 20.5万 - 项目类别:
Reducing Opioid Mortality in Illinois (ROMI)
降低伊利诺伊州阿片类药物死亡率 (ROMI)
- 批准号:
10402783 - 财政年份:2019
- 资助金额:
$ 20.5万 - 项目类别:
Predictive Analytics Applied to Integrated Administrative Emergency Response Datasets in Chicago - Resubmission 01
预测分析应用于芝加哥综合行政应急响应数据集 - 重新提交 01
- 批准号:
9981836 - 财政年份:2019
- 资助金额:
$ 20.5万 - 项目类别:
Reducing Opioid Mortality in Illinois (ROMI)
降低伊利诺伊州阿片类药物死亡率 (ROMI)
- 批准号:
9978033 - 财政年份:2019
- 资助金额:
$ 20.5万 - 项目类别:
Community network driven COVID-19 testing of vulnerable populations in the Central US
社区网络驱动的美国中部弱势群体 COVID-19 测试
- 批准号:
10274013 - 财政年份:2019
- 资助金额:
$ 20.5万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 20.5万 - 项目类别:
Discovery-Driven Mathematics and Artificial Intelligence for Biosciences and Drug Discovery
用于生物科学和药物发现的发现驱动数学和人工智能
- 批准号:
10551576 - 财政年份:2023
- 资助金额:
$ 20.5万 - 项目类别:
Biomarkers for Brain Resetting as an Assistive Tool in the Treatment of Status Epilepticus
大脑重置生物标志物作为治疗癫痫持续状态的辅助工具
- 批准号:
10698969 - 财政年份:2023
- 资助金额:
$ 20.5万 - 项目类别:
Previvors Recharge: A Resilience Program for Cancer Previvors
癌症预防者恢复活力计划:癌症预防者恢复力计划
- 批准号:
10698965 - 财政年份:2023
- 资助金额:
$ 20.5万 - 项目类别: