Coupling a multifunctional tag to scalable endogenous tagging technology for improved genome-wide perturbation screens

将多功能标签与可扩展的内源标记技术相结合,以改进全基因组扰动筛选

基本信息

项目摘要

Project Summary Characterizing the functions of protein-coding genes is an important goal in the post-genomic era. While proteins are the ultimate effectors of most cellular functions, including those mis-regulated in disease, we have an extremely limited understanding of the roles of the majority of proteins in the human proteome. Though powerful, existing technologies for the high-throughput interrogation of protein-coding genes, including CRISPR/Cas9-based approaches and RNA interference, require extended periods of time to effect changes in protein levels, and thus suffer two critical shortcomings. First, they are unable to detect the contribution of growth- essential genes to any cellular process other than viability, as any cell carrying a perturbation in such a gene would fail to propagate. Second, compensatory and adaptive effects have ample opportunity to manifest, thus convoluting screen results by ameliorating the effect of the perturbation, or by generating a novel, unrelated effect. To address these critical limitations, I propose to develop a new screening technology that will minimize the time between perturbation and screen readout by inducibly and rapidly degrading endogenous proteins. This is made possible by a readily scalable endogenous tagging technology that harnesses homology-independent targeted integration to insert a synthetic exon into the intron of a protein-coding gene at the site of a double strand break. The synthetic exon will encode a multifunctional ligand-binding protein that depending on the ligand, will lead to fluorescence or rapid degradation. Pooled libraries of sgRNAs targeting different introns allows for the creation of custom libraries of cells, where each cell carries this multifunctional tag on a different protein. The utility of this approach will be established aims 1 and 2 by testing (1) whether cells that have undergone rapid depletion of growth-essential proteins are maintained in the cell library at the end of the short perturbation window and (2) whether rapid depletion and CRISPR knockout at the same protein produce different effects on a well-established phenotype, due to the distorting effects of adaptation events in the knockout. Aim 3 witnesses the use of a machine learning approach and the data from thousands of attempted tagging events to identify how the features of a potential tag site dictate the likelihood that a functional protein carrying the multifunctional tag will be produced. The resulting model will be unleashed on the protein-coding genome to predict high-quality tag sites for as many protein-coding genes as possible. This will establish an improved screening paradigm that will allow for the pooled interrogation of the contributions of thousands of proteins to a phenotype of interest, will thus accelerate the rate at which we come to understand the poorly understood elements of the protein-coding genome. These efforts will be well supported by the outstanding resources for experimentation and mentorship at both the University of Pennsylvania and the Children’s Hospital of Philadelphia, and will provide excellent training in experimental techniques for protein perturbation and characterization, as well computational literacy in the broadly useful field of machine learning.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephanie Elizabeth Sansbury其他文献

Stephanie Elizabeth Sansbury的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephanie Elizabeth Sansbury', 18)}}的其他基金

Coupling a multifunctional tag to scalable endogenous tagging technology for improved genome-wide perturbation screens
将多功能标签与可扩展的内源标记技术相结合,以改进全基因组扰动筛选
  • 批准号:
    10268980
  • 财政年份:
    2020
  • 资助金额:
    $ 3.42万
  • 项目类别:

相似国自然基金

企业绩效评价的DEA-Benchmarking方法及动态博弈研究
  • 批准号:
    70571028
  • 批准年份:
    2005
  • 资助金额:
    16.5 万元
  • 项目类别:
    面上项目

相似海外基金

An innovative EDI data, insights & peer benchmarking platform enabling global business leaders to build data-led EDI strategies, plans and budgets.
创新的 EDI 数据、见解
  • 批准号:
    10100319
  • 财政年份:
    2024
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Collaborative R&D
BioSynth Trust: Developing understanding and confidence in flow cytometry benchmarking synthetic datasets to improve clinical and cell therapy diagnos
BioSynth Trust:发展对流式细胞仪基准合成数据集的理解和信心,以改善临床和细胞治疗诊断
  • 批准号:
    2796588
  • 财政年份:
    2023
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Studentship
Collaborative Research: SHF: Medium: A Comprehensive Modeling Framework for Cross-Layer Benchmarking of In-Memory Computing Fabrics: From Devices to Applications
协作研究:SHF:Medium:内存计算结构跨层基准测试的综合建模框架:从设备到应用程序
  • 批准号:
    2347024
  • 财政年份:
    2023
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Standard Grant
Elements: CausalBench: A Cyberinfrastructure for Causal-Learning Benchmarking for Efficacy, Reproducibility, and Scientific Collaboration
要素:CausalBench:用于因果学习基准测试的网络基础设施,以实现有效性、可重复性和科学协作
  • 批准号:
    2311716
  • 财政年份:
    2023
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Standard Grant
Benchmarking collisional rates and hot electron transport in high-intensity laser-matter interaction
高强度激光-物质相互作用中碰撞率和热电子传输的基准测试
  • 批准号:
    2892813
  • 财政年份:
    2023
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Studentship
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
  • 批准号:
    2233969
  • 财政年份:
    2023
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Continuing Grant
FET: Medium: Quantum Algorithms, Complexity, Testing and Benchmarking
FET:中:量子算法、复杂性、测试和基准测试
  • 批准号:
    2311733
  • 财政年份:
    2023
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Continuing Grant
Establishing and benchmarking advanced methods to comprehensively characterize somatic genome variation in single human cells
建立先进方法并对其进行基准测试,以全面表征单个人类细胞的体细胞基因组变异
  • 批准号:
    10662975
  • 财政年份:
    2023
  • 资助金额:
    $ 3.42万
  • 项目类别:
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
  • 批准号:
    2233968
  • 财政年份:
    2023
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Continuing Grant
Benchmarking Quantum Advantage
量子优势基准测试
  • 批准号:
    EP/Y004418/1
  • 财政年份:
    2023
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了