Deep Learning for Automated Aortic Stenosis and Valvular Heart Disease Detection Using a Digital Stethoscope
使用数字听诊器进行深度学习自动主动脉瓣狭窄和瓣膜性心脏病检测
基本信息
- 批准号:10425344
- 负责人:
- 金额:$ 92.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptedAdultAlgorithmsAortic Valve StenosisAuscultationCardiacCaringCellular PhoneClinicClinicalClinical DataCollectionComputer softwareDataData CollectionDatabasesDetectionDevice DesignsDiagnosisDiseaseEarly DiagnosisEchocardiographyEkoElectrocardiogramEnrollmentEnvironmentGoalsGoldHealth PersonnelHeart SoundsHeart Valve DiseasesHeart murmurInstitutionLabelLeadMedical DeviceMethodsMitral Valve InsufficiencyModelingNetwork-basedOutcome StudyPathologyPatient-Focused OutcomesPatientsPerformancePersonal ComputersPhasePrevalencePrimary Health CarePublic HealthReportingResourcesScreening procedureSensitivity and SpecificitySeveritiesSignal TransductionSiteSmall Business Innovation Research GrantSpecificityStethoscopesStreamSupervisionSystemTablet ComputerTestingTrainingTricuspid Valve Insufficiencyaccurate diagnosisalgorithm trainingautomated algorithmbasecardiovascular healthclinical decision supportclinical developmentclinical research siteclinically significantcloud softwareconvolutional neural networkcostdeep learningdeep learning algorithmdeep neural networkdiagnosis standarddigitalexperienceinnovationlearning strategymedical specialtiespoint of carepublic health relevancescreeningsoundunderserved area
项目摘要
Abstract
This SBIR Phase II project will develop a deep learning-based clinical decision support algorithm for detecting
and diagnosing valvular heart disease based on heart sounds recorded using the Eko Core and Eko Duo Digital
Stethoscopes. This screening tool will help to decrease the number of patients with valvular heart disease that
remain undertreated simply because their condition is not diagnosed. Auscultation is commonly the method by
which valvular heart disease is first detected, but cases often fail to be referred to echocardiography for diagnosis
because clinicians fail to detect heart murmurs, particularly in noisy or rushed environments. To address this
challenge, Eko had developed the Core, a digital stethoscope attachment that can be added in-line to a clinician’s
existing stethoscope that amplifies heart sounds and Duo, a digital stethoscope in a handheld form factor with
built-in single lead electrocardiogram. Both devices are designed to stream digitized phonocardiograms to a
smartphone, tablet or personal computer. There, the signal can be analyzed with the decision support algorithm
we will develop as part of this project. The specific aims of this study are: (1) to collect a database with condition-
specific recording labels to enable deep learning for heart sounds though clinical data collection at six clinical
sites, and (2) to develop and evaluate a collection of deep convolutional neural network-based algorithms
trained on the database. These algorithms will (2a) distinguish between systolic, diastolic and continuous
murmurs, (2b) classify aortic stenosis (AS), mitral regurgitation (MR), tricuspid regurgitation (TR), and innocent
murmurs (2c) assess the severity of AS, MR and TR. By integrating these deep learning algorithms into Eko's
mobile and cloud software platform, currently used by clinicians at over 1000 institutions worldwide, we
anticipate this algorithm will enable more accurate screening for valvular heart disease in adult patients, leading
to earlier diagnosis and better patient outcomes.
摘要
SBIR第二阶段项目将开发一种基于深度学习的临床决策支持算法,用于检测
以及基于使用Eko Core和Eko Duo Digital记录的心音诊断心脏瓣膜病
听诊器。这种筛查工具将有助于减少心脏瓣膜病患者的数量,
仅仅因为他们的病情没有得到诊断,他们的治疗仍然不足。听诊通常是通过
心脏瓣膜病首先被发现,但病例往往无法通过超声心动图进行诊断
因为临床医生不能检测心脏杂音,特别是在嘈杂或匆忙的环境中。为了解决这个
为了应对挑战,Eko开发了Core,这是一种数字听诊器附件,可以在线添加到临床医生的
现有的放大心音的听诊器和Duo,一种手持形状因子的数字听诊器,
内置单导联心电图。这两种设备都被设计成将数字化心音图流传输到
智能手机、平板电脑或个人电脑。在那里,可以用决策支持算法分析信号
我们将把它作为这个项目的一部分。本研究的具体目的是:(1)收集一个条件-
特定的录音标签,通过在六个临床中心收集临床数据,实现对心音的深度学习
网站,以及(2)开发和评估一系列基于深度卷积神经网络的算法
在数据库上训练。这些算法将(2a)区分收缩期、舒张期和连续期
杂音,(2b)分类主动脉瓣狭窄(AS),二尖瓣返流(MR),三尖瓣返流(TR),和无辜
杂音(2c)评估AS、MR和TR的严重程度。通过将这些深度学习算法集成到Eko的
移动的和云软件平台,目前由全球1000多家机构的临床医生使用,我们
预计该算法将能够更准确地筛查成年患者的心脏瓣膜病,
更早的诊断和更好的患者结果。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deep Learning Algorithms to Detect Murmurs Associated With Structural Heart Disease.
- DOI:10.1161/jaha.123.030377
- 发表时间:2023-10-17
- 期刊:
- 影响因子:5.4
- 作者:
- 通讯作者:
Deep Learning Algorithm for Automated Cardiac Murmur Detection via a Digital Stethoscope Platform.
通过数字听诊器平台自动检测心脏杂音的深度学习算法。
- DOI:10.1161/jaha.120.019905
- 发表时间:2021-05-04
- 期刊:
- 影响因子:5.4
- 作者:Chorba JS;Shapiro AM;Le L;Maidens J;Prince J;Pham S;Kanzawa MM;Barbosa DN;Currie C;Brooks C;White BE;Huskin A;Paek J;Geocaris J;Elnathan D;Ronquillo R;Kim R;Alam ZH;Mahadevan VS;Fuller SG;Stalker GW;Bravo SA;Jean D;Lee JJ;Gjergjindreaj M;Mihos CG;Forman ST;Venkatraman S;McCarthy PM;Thomas JD
- 通讯作者:Thomas JD
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James David Thomas其他文献
James David Thomas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James David Thomas', 18)}}的其他基金
Deep Learning for Automated Aortic Stenosis and Valvular Heart Disease Detection Using a Digital Stethoscope
使用数字听诊器进行深度学习自动主动脉瓣狭窄和瓣膜性心脏病检测
- 批准号:
10215611 - 财政年份:2018
- 资助金额:
$ 92.08万 - 项目类别:
相似海外基金
How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
- 批准号:
2315783 - 财政年份:2023
- 资助金额:
$ 92.08万 - 项目类别:
Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
- 批准号:
2719534 - 财政年份:2022
- 资助金额:
$ 92.08万 - 项目类别:
Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
- 批准号:
20K01113 - 财政年份:2020
- 资助金额:
$ 92.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633211 - 财政年份:2020
- 资助金额:
$ 92.08万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2436895 - 财政年份:2020
- 资助金额:
$ 92.08万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633207 - 财政年份:2020
- 资助金额:
$ 92.08万 - 项目类别:
Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
- 批准号:
19K01745 - 财政年份:2019
- 资助金额:
$ 92.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
- 批准号:
426559561 - 财政年份:2019
- 资助金额:
$ 92.08万 - 项目类别:
Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
- 批准号:
2236701 - 财政年份:2019
- 资助金额:
$ 92.08万 - 项目类别:
Studentship
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
- 批准号:
415543446 - 财政年份:2019
- 资助金额:
$ 92.08万 - 项目类别:
Research Fellowships