Predict to Prevent: Dynamic Spatiotemporal Analyses of Opioid Overdose to Guide Pre-Emptive Public Health Responses

预测预防:阿片类药物过量的动态时空分析以指导预防性公共卫生应对

基本信息

  • 批准号:
    10444263
  • 负责人:
  • 金额:
    $ 76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-15 至 2027-03-31
  • 项目状态:
    未结题

项目摘要

Predict to Prevent: Dynamic Spatiotemporal Analyses of Opioid Overdose to Guide Pre-Emptive Public Health Responses PROJECT SUMMARY/ABSTRACT Opioid overdose (OD) fatalities have reached crisis levels in all socioeconomic and geographic communities in the US. By utilizing a first-of-its-kind statewide Public Health Data Warehouse (PHD) with multiple linked administrative datasets and state-of-the-art Bayesian spatiotemporal models, we are in a unique position to fill in the fundamental gaps in the field’s ability to rapidly identify current OD patterns, predict future OD epidemics, and evaluate the effectiveness of public health and clinical interventions. In Massachusetts (MA), the State Legislature enacted policy in 2015 that provided authorization to the MA Department of Public Health (MDPH) to develop a massively linked administrative dataset to allow public health officials and policymakers to better understand the extent of and contributors to the opioid OD epidemic. The PHD Warehouse, representing 98% of the MA population, currently links data from 25+ distinct sources (e.g., death records, all-payer claims, post-mortem toxicology, hospital discharges, and the prescription monitoring program). Supported by strong preliminary studies demonstrating the power of the PHD and our strong partnership with MDPH, we aim to develop a new population health analytic framework to support opioid OD control in MA that can be generalizable to other parts of the country. Our Specific Aims are to: 1) Develop a Bayesian multilevel spatiotemporal model to identify individual, interpersonal, community, and societal factors that contribute to opioid OD; 2) develop an efficient Bayesian spatiotemporal model to identify time- space OD clusters, and extend the model to construct a dynamic predictive model; and, 3) evaluate and predict policy and intervention effects through model-based simulation studies to provide practical guidance and decision-making support to public health officials. Aims 1, 2 and 3 can be easily adopted and reproduced by users in other public health jurisdictions and sectors to foster cross-sector, cross-agency opioid OD control. Our approach is innovative due to the use of PHD and sophisticated Bayesian spatiotemporal modeling approaches. The proposed study is highly significant, because it is conceptualized to improve current and future public health practice, facilitating data-driven and evidence-based implementation science interventions in the locations at greatest risk and at the time when they are most needed. Our results can immediately and significantly influence opioid OD prevention policies and practices, guiding pre-emptive public health and clinical responses. We will develop our visualization tools, analytical approaches, and related code, in collaboration with MDPH and our Community Advisory Board (CAB), to enhance PHD capabilities and improve dissemination of findings. Our tools, approaches, and code will also be made available for national dissemination, providing paradigm shifting approaches to address the opioid crisis. Our research directly addresses NIDA’s goal to “Develop new and improved strategies to prevent drug use and its consequences.”
预测预防:阿片类药物过量的动态时空分析指导

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cici Bauer其他文献

Cici Bauer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cici Bauer', 18)}}的其他基金

Addressing COVID-19 Testing Disparities in Vulnerable Populations Using a Community JITAI (Just in Time Adaptive Intervention) Approach: RADxUP Phase III
使用社区 JITAI(及时自适应干预)方法解决弱势群体中的 COVID-19 检测差异:RADxUP 第三阶段
  • 批准号:
    10847026
  • 财政年份:
    2022
  • 资助金额:
    $ 76万
  • 项目类别:
Addressing COVID-19 Testing Disparities in Vulnerable Populations Using a Community JITAI (Just in Time Adaptive Intervention) Approach: RADxUP Phase III
使用社区 JITAI(及时自适应干预)方法解决弱势群体中的 COVID-19 检测差异:RADxUP 第三阶段
  • 批准号:
    10617103
  • 财政年份:
    2022
  • 资助金额:
    $ 76万
  • 项目类别:
Predict to Prevent: Dynamic Spatiotemporal Analyses of Opioid Overdose to Guide Pre-Emptive Public Health Responses
预测预防:阿片类药物过量的动态时空分析以指导预防性公共卫生应对
  • 批准号:
    10618998
  • 财政年份:
    2022
  • 资助金额:
    $ 76万
  • 项目类别:

相似海外基金

How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
  • 批准号:
    2315783
  • 财政年份:
    2023
  • 资助金额:
    $ 76万
  • 项目类别:
    Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
  • 批准号:
    2719534
  • 财政年份:
    2022
  • 资助金额:
    $ 76万
  • 项目类别:
    Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
  • 批准号:
    2633211
  • 财政年份:
    2020
  • 资助金额:
    $ 76万
  • 项目类别:
    Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
  • 批准号:
    20K01113
  • 财政年份:
    2020
  • 资助金额:
    $ 76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
  • 批准号:
    2436895
  • 财政年份:
    2020
  • 资助金额:
    $ 76万
  • 项目类别:
    Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
  • 批准号:
    2633207
  • 财政年份:
    2020
  • 资助金额:
    $ 76万
  • 项目类别:
    Studentship
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
  • 批准号:
    426559561
  • 财政年份:
    2019
  • 资助金额:
    $ 76万
  • 项目类别:
    Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
  • 批准号:
    2236701
  • 财政年份:
    2019
  • 资助金额:
    $ 76万
  • 项目类别:
    Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
  • 批准号:
    19K01745
  • 财政年份:
    2019
  • 资助金额:
    $ 76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
  • 批准号:
    415543446
  • 财政年份:
    2019
  • 资助金额:
    $ 76万
  • 项目类别:
    Research Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了