Development of a closed-loop control system for plasma medicine

血浆医学闭环控制系统的开发

基本信息

项目摘要

Project Summary Plasma medicine is a promising, relatively new field that encompasses the discovery and development of biomedical applications for cold plasma (a.k.a. non-thermal, non-equilibrium, or atmospheric plasma). Cold plasma is generated in several forms by using a strong electromagnetic field to ionize gas at atmospheric pressure and ambient temperature. When cold plasma is applied to living cells or tissues, the effects can range from subtle changes in cellular metabolism and function to programmed or necrotic cell death, dependent on plasma properties (or amount of plasma). In therapeutic strategies involving plasma, the dose delivered is an important determinant of a successful treatment. A sub-optimal plasma dose may be ineffective, while a plasma dose in excess of that required to achieve the desired outcome may cause adverse side effects. However, no real-time measure of an effective plasma dose exists. The determination and controlled delivery of a plasma dose, at present, relies on empirical measures of outcome that assess secondary or tertiary effects of plasma hours to days after the exposure. There is a critical need for regulation of cold plasma delivery that uses concurrent measurement of primary plasma effectors (markers) that correlate with biological and clinical outcomes (endpoints) necessary to define plasma dose. The objective of this grant is to develop endpoint detection strategies for plasma-based therapies, using plasma-facilitated wound repair as the endpoint and oxidation-reduction potential (ORP) as the primary detectable marker. The hypothesis is that there is a link between the absolute ORP and cellular responses, allowing us to develop an ORP sensor-based method that monitors the plasma dose and feeds this information in a closed-loop control system. The proposed research is innovative because it will use ORP detection as the basis for a sensor-controlled, closed-loop feedback control system that will regulate plasma delivery as determined by the endpoint outcome. Collaborative investigational and development efforts will combine experience in models of in vivo wound healing (Rutgers University), in vitro models of epithelial wound repair, and plasma biology (Drexel University) with expertise in device engineering and plasma chemistry (North Carolina State University). The proposed research is framed around the following specific aims: (1) Establish correlations between CAP dose ranges, measurable biological parameters and wound healing outcomes using in vivo and in vitro models of wound healing; (2) correlate sensor outputs with cellular responses in the in vitro scratch assay; (3) develop a closed-loop control system for regulated plasma delivery; and (4) challenge and optimize the controller in vitro and in vivo. Our focus on endpoint detection and feedback control for wound healing will facilitate developmental efforts for this particular therapeutic use of plasma, but will also provide a solid foundation for applying endpoint detection to other translational applications of cold plasma, including therapies for dermatological conditions, cancer, and infections by viral and bacterial pathogens.
项目摘要 血浆医学是一个有前途的、相对较新的领域,其包括发现和开发 冷等离子体的生物医学应用(a.k.a.非热、非平衡或大气等离子体)。冷 通过使用强电磁场在大气压下对气体进行电离来产生多种形式的等离子体。 压力和环境温度。当冷等离子体应用于活细胞或组织时, 从细胞代谢和功能的细微变化到程序性或坏死性细胞死亡,依赖于 血浆性质(或血浆量)。在涉及血浆的治疗策略中,所递送的剂量是血浆的浓度。 成功治疗的重要决定因素。次优的血浆剂量可能是无效的,而血浆 超过达到所需结果所需的剂量可能会引起不良副作用。但没有 存在有效血浆剂量的实时测量。等离子体的测定和控制输送 目前,剂量依赖于评估血浆的二级或三级效应的结果的经验性措施, 暴露后数小时至数天。迫切需要调节冷等离子体输送, 与生物学和临床相关的主要血浆效应物(标志物)的同时测量 定义血浆剂量所需的结局(终点)。这项资助的目的是开发端点 基于等离子体的治疗的检测策略,使用等离子体促进的伤口修复作为终点, 氧化还原电位(ORP)作为主要的可检测标志物。我们的假设是 之间的绝对氧化还原电位和细胞反应,使我们能够开发一种基于氧化还原电位传感器的方法, 监测等离子体剂量并将该信息输入闭环控制系统。拟议的研究是 创新,因为它将使用ORP检测作为传感器控制的闭环反馈控制的基础 将根据终点结果来调节血浆输送的系统。合作研究 和开发工作将结合联合收割机在体内伤口愈合模型(罗格斯大学)、体外 上皮伤口修复模型和血浆生物学(德雷克塞尔大学),具有设备工程方面的专业知识 和等离子体化学(北卡罗来纳州州立大学)。拟议的研究是围绕以下框架 具体目标:(1)建立CAP剂量范围、可测量的生物学参数和 使用伤口愈合的体内和体外模型的伤口愈合结果;(2)将传感器输出与 体外划痕试验中的细胞反应;(3)开发用于调节血浆的闭环控制系统 递送;和(4)在体外和体内挑战和优化控制器。我们专注于端点检测, 用于伤口愈合的反馈控制将促进用于这种特定治疗用途的开发努力, 等离子体,但也将提供一个坚实的基础,应用端点检测到其他翻译应用 冷等离子体,包括治疗皮肤病,癌症,以及病毒和细菌感染 病原体

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Francois Berthiaume其他文献

Francois Berthiaume的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Francois Berthiaume', 18)}}的其他基金

Development of a closed-loop control system for plasma medicine
血浆医学闭环控制系统的开发
  • 批准号:
    10558618
  • 财政年份:
    2022
  • 资助金额:
    $ 59.38万
  • 项目类别:
Multifunctional Nanoparticles Containing sRAGE Potentiated Bioactive Peptides for Wound Healing
含有 sRAGE 增强生物活性肽的多功能纳米粒子,用于伤口愈合
  • 批准号:
    9181870
  • 财政年份:
    2016
  • 资助金额:
    $ 59.38万
  • 项目类别:
Multifunctional Nanoparticles Containing sRAGE Potentiated Bioactive Peptides for Wound Healing
含有 sRAGE 增强生物活性肽的多功能纳米粒子,用于伤口愈合
  • 批准号:
    9310393
  • 财政年份:
    2016
  • 资助金额:
    $ 59.38万
  • 项目类别:
Improved Dermal Scaffolds for Skin Regeneration
改善皮肤再生的真皮支架
  • 批准号:
    7659039
  • 财政年份:
    2009
  • 资助金额:
    $ 59.38万
  • 项目类别:
Improved Dermal Scaffolds for Skin Regeneration
改善皮肤再生的真皮支架
  • 批准号:
    7869383
  • 财政年份:
    2009
  • 资助金额:
    $ 59.38万
  • 项目类别:

相似海外基金

Electron Irradiation of Graphene in Air at Atmospheric Pressure: a Method for Hydrogenating Graphene for Hydrogen Storage Applications
大气压下空气中石墨烯的电子辐照:一种用于储氢应用的石墨烯氢化方法
  • 批准号:
    2312436
  • 财政年份:
    2023
  • 资助金额:
    $ 59.38万
  • 项目类别:
    Continuing Grant
Elucidation of surface-launched plasma bullet generation mechanism and its application to large-volume atmospheric-pressure low-temperature plasma generation
地射等离子体弹产生机理的阐明及其在大体积常压低温等离子体产生中的应用
  • 批准号:
    23H01166
  • 财政年份:
    2023
  • 资助金额:
    $ 59.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Atmospheric-Pressure Manufacturing of Nanocrystalline Diamonds by Plasma-Assisted Flat Flame Vapor Deposition
职业:通过等离子体辅助平面火焰气相沉积法常压制造纳米晶金刚石
  • 批准号:
    2238235
  • 财政年份:
    2023
  • 资助金额:
    $ 59.38万
  • 项目类别:
    Standard Grant
Collaborative Research: ECLIPSE: Exploring Non-Oxidative Reaction Pathways of Atmospheric Pressure Plasmas
合作研究:ECLIPSE:探索大气压等离子体的非氧化反应途径
  • 批准号:
    2308859
  • 财政年份:
    2023
  • 资助金额:
    $ 59.38万
  • 项目类别:
    Standard Grant
Collaborative Research: ECLIPSE: Exploring Non-Oxidative Reaction Pathways of Atmospheric Pressure Plasmas
合作研究:ECLIPSE:探索大气压等离子体的非氧化反应途径
  • 批准号:
    2308857
  • 财政年份:
    2023
  • 资助金额:
    $ 59.38万
  • 项目类别:
    Continuing Grant
Atmospheric pressure ion irradiation technique using ion-conductive glass and evaluation of ion irradiation and cell response
使用离子导电玻璃的大气压离子照射技术以及离子照射和细胞反应的评估
  • 批准号:
    23H01683
  • 财政年份:
    2023
  • 资助金额:
    $ 59.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidation of the generation mechanism of homogeneous dielectric barrier discharge in atmospheric pressure air by surface charge density measurement
通过表面电荷密度测量阐明大气压空气中均匀介质阻挡放电的产生机制
  • 批准号:
    23K03824
  • 财政年份:
    2023
  • 资助金额:
    $ 59.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: ECLIPSE: Exploring Non-Oxidative Reaction Pathways of Atmospheric Pressure Plasmas
合作研究:ECLIPSE:探索大气压等离子体的非氧化反应途径
  • 批准号:
    2308858
  • 财政年份:
    2023
  • 资助金额:
    $ 59.38万
  • 项目类别:
    Standard Grant
Development of a new wound treatment with reduced HMGB1 using non-thermal atmospheric pressure plasma
使用非热常压等离子体开发减少 HMGB1 的新型伤口治疗方法
  • 批准号:
    22H03250
  • 财政年份:
    2022
  • 资助金额:
    $ 59.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Measurement and modeling of surface reaction of reactive species in surface treatment using atmospheric pressure plasma
使用大气压等离子体进行表面处理中活性物质的表面反应的测量和建模
  • 批准号:
    22K18789
  • 财政年份:
    2022
  • 资助金额:
    $ 59.38万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了