Deep learning Based Phenotyping and Treatment Optimization for Heart Failure with Preserved Ejection Fraction
基于深度学习的射血分数保留的心力衰竭表型分析和治疗优化
基本信息
- 批准号:10444412
- 负责人:
- 金额:$ 57.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-15 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAortic Valve StenosisBig DataBiological MarkersCardiacChronic Obstructive Pulmonary DiseaseClinicalClinical DataClinical TrialsCodeCommunitiesComplexComputer softwareDataDevelopmentDiabetes MellitusDiagnosisDiagnosticDiseaseEFRACEconomic BurdenElectronic Health RecordEnvironmental Risk FactorFailureGoalsHeartHeart failureHospitalizationHypertensionImageImage AnalysisKnowledgeLaboratory ProceduresLearningLife StyleMachine LearningMagnetic ResonanceMalignant NeoplasmsMeasurementMethodsModelingMorbidity - disease rateMorphologyNatureObesity EpidemicOutcomePatient imagingPatientsPerformancePharmaceutical PreparationsPhenotypePhysiciansPilot ProjectsPopulationPrevalenceProceduresPrognosisPsychological reinforcementPublic HealthPublishingQuality of lifeRadiology SpecialtyRecommendationRecording of previous eventsReportingResearchResourcesSepsisSeriesSource CodeSurfaceSymptomsSyndromeTechniquesTherapeuticTreatment EfficacyTreatment FailureValidationWorkaging populationautomated analysisbasebiomarker identificationcardiac magnetic resonance imagingclinical decision supportclinical efficacyclinical investigationclinically significantcomorbiditycomputerized data processingdeep learningdeep reinforcement learningeffective therapyfeature extractionheart imagingimage processingimaging biomarkerimprovedindividualized medicinelifestyle factorslongitudinal analysismagnetic resonance imaging biomarkermortalitymultimodalitynovelnovel therapeuticsopen dataoptimal treatmentspersonalized medicinepreservationreconstructionrecurrent neural networkrisk stratificationshape analysissymposiumtargeted treatmenttreatment optimizationtreatment planningtreatment strategytrend
项目摘要
Heart failure with preserved ejection fraction (HFpEF) is a major public health problem
that is rising in prevalence with the aging population and the epidemics of obesity, diabetes, and
hypertension. HFpEF accounts for around 50% of all heart failure (HF) cases with a prevalence
of at least 3 million in the U.S. HFpEF is associated with high morbidity and mortality. After HF
hospitalization, the 5-year survival of HFpEF is a dismal 35%, which is worse than most cancers.
In addition, quality of life in HFpEF is as poor or worse than HF with reduced ejection fraction
(HFrEF). A series of large-scale clinical trials has been conducted, but most of them only provided
neutral result and failed to prove the efficacy of treatments. The alarming trend of HFpEF with
lack of effective therapies for patients constitutes a major public health problem.
Recent studies have attributed this failure to distinct systemic nature of HFpEF syndrome
and proposing sub-phenotypes within the heterogeneous HFpEF syndrome, which highlighted
the increasing need for better-targeted therapies to specific HFpEF subtypes. The seemingly
disparate but complex interrelated phenotypes, along with comorbidities, lifestyle and
environmental factors, make the multi-organ syndrome best beneficial from a big data approach.
However, conventional studies usually only included limited cross-sectional clinical symptoms,
lab results and/or gross measurements on cardiac imaging to investigate HFpEF, overlooking the
rich temporal information from electronic health record (EHR) and detailed spatial information
reserved in imaging.
In this proposal, we will introduce advance shape analysis method to extract novel image
features and biomarker from CMR images and validate at population level (Aim 1). We will then
combine image information with multi-dimensional temporal EHR data to jointly identify clinically
significant HFpEF subclasses (i.e. phenotyping) using state-of-art machine learning technique
(Aim 2). Towards therapeutic goals based on phenotyping, we will further investigate optimal
treatment strategies with current available agents using deep reinforcement learning (RL) based
on massive EHR data to meet the pressing need before ongoing trials provide sufficient evidence
on new drugs with proved clinical efficacy (Aim 3). Furthermore, we will develop an online, open-
access platform to facilitating the sharing of code, data and knowledge of this study (Aim 4). We
believe this research can improve our understanding, phenotyping and management of HFpEF,
which might positively ease the clinical and economic burdens in turn both in U.S. and worldwide.
射血分数正常的心力衰竭(HFpEF)是一个主要的公共卫生问题
随着人口老龄化和肥胖、糖尿病和糖尿病的流行,
高血压HFpEF约占所有心力衰竭(HF)病例的50%,
在美国至少有300万人患有HFpEF,与高发病率和死亡率相关。HF后
在住院治疗期间,HFpEF的5年存活率为令人沮丧的35%,这比大多数癌症更差。
此外,HFpEF的生活质量与射血分数降低的HF一样差或更差
(HFrEF)。已经进行了一系列大规模的临床试验,但其中大多数仅提供
中性结果,未能证明治疗的有效性。HFpEF的惊人趋势,
病人缺乏有效的治疗方法是一个主要的公共卫生问题。
最近的研究将这一失败归因于HFpEF综合征独特的全身性质
并提出异质性HFpEF综合征中的亚表型,
越来越需要针对特定HFpEF亚型的更好靶向治疗。看似
不同但复杂的相互关联的表型,沿着合并症,生活方式和
环境因素,使多器官综合征从大数据方法中获益最大。
然而,传统的研究通常只包括有限的横断面临床症状,
心脏成像的实验室结果和/或大体测量,以研究HFpEF,忽略
电子健康记录(EHR)中丰富的时间信息和详细的空间信息
保留在成像中。
在这个方案中,我们将引入先进的形状分析方法来提取新的图像
特征和生物标志物,并在人群水平上进行验证(目标1)。然后我们将
联合收割机将图像信息与多维时间EHR数据相结合,
使用最先进的机器学习技术进行显著的HFpEF亚类(即表型分析)
(Aim 2)的情况。为了达到基于表型的治疗目标,我们将进一步研究最佳的
使用基于深度强化学习(RL)的当前可用代理的治疗策略
在正在进行的试验提供足够的证据之前,
研究经临床证实有效的新药(目标3)。此外,我们将开发一个在线的,开放的-
访问平台,以促进本研究的代码、数据和知识的共享(目标4)。我们
相信这项研究可以提高我们对HFpEF的理解、表型分析和管理,
这可能反过来在美国和世界范围内积极地减轻临床和经济负担。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Quanzheng Li其他文献
Quanzheng Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Quanzheng Li', 18)}}的其他基金
Deep learning Based Phenotyping and Treatment Optimization for Heart Failure with Preserved Ejection Fraction
基于深度学习的射血分数保留的心力衰竭表型分析和治疗优化
- 批准号:
10592341 - 财政年份:2022
- 资助金额:
$ 57.17万 - 项目类别:
TR&D2: Advanced Statistical Image Reconstruction & Physics Informed Artificial Intelligence for Quantitative PET/MR
TR
- 批准号:
10651773 - 财政年份:2017
- 资助金额:
$ 57.17万 - 项目类别:
Unified Joint Statistical Reconstruction of PET & MR
PET统一联合统计重建
- 批准号:
10263164 - 财政年份:2017
- 资助金额:
$ 57.17万 - 项目类别:
Superhigh Sensitivity SPECT Imaging with Dense Camera Arrays
使用密集相机阵列进行超高灵敏度 SPECT 成像
- 批准号:
8702789 - 财政年份:2014
- 资助金额:
$ 57.17万 - 项目类别:
Superhigh Sensitivity SPECT Imaging with Dense Camera Arrays
使用密集相机阵列进行超高灵敏度 SPECT 成像
- 批准号:
8814222 - 财政年份:2014
- 资助金额:
$ 57.17万 - 项目类别:
Quantitative Methods for Clinical Whole Body Dynamic PET
临床全身动态 PET 的定量方法
- 批准号:
8237421 - 财政年份:2011
- 资助金额:
$ 57.17万 - 项目类别:
Quantitative Methods for Clinical Whole Body Dynamic PET
临床全身动态 PET 的定量方法
- 批准号:
8588924 - 财政年份:2011
- 资助金额:
$ 57.17万 - 项目类别:
Quantitative Methods for Clinical Whole Body Dynamic PET
临床全身动态 PET 的定量方法
- 批准号:
8399088 - 财政年份:2011
- 资助金额:
$ 57.17万 - 项目类别:
An Integrated Statistical Framework for Lesion Detection Using Dynamic PET
使用动态 PET 进行病变检测的综合统计框架
- 批准号:
8421579 - 财政年份:2010
- 资助金额:
$ 57.17万 - 项目类别:
An Integrated Statistical Framework for Lesion Detection Using Dynamic PET
使用动态 PET 进行病变检测的综合统计框架
- 批准号:
7877521 - 财政年份:2010
- 资助金额:
$ 57.17万 - 项目类别:
相似海外基金
Contribution of rare genetic variants to aortic valve stenosis in Quebec French-Canadians
罕见遗传变异对魁北克法裔加拿大人主动脉瓣狭窄的影响
- 批准号:
493134 - 财政年份:2023
- 资助金额:
$ 57.17万 - 项目类别:
Role of clonal hematopoiesis of indeterminate potential in development of calcific aortic valve stenosis
不确定潜能克隆造血在钙化性主动脉瓣狭窄发展中的作用
- 批准号:
23K07522 - 财政年份:2023
- 资助金额:
$ 57.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Comprehensive exploratory study on aortic valve stenosis with activated macrophages as the main axis
以活化巨噬细胞为主轴的主动脉瓣狭窄综合探索性研究
- 批准号:
23K07512 - 财政年份:2023
- 资助金额:
$ 57.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of an Artificial Intelligence Model for Evaluation of Echocardiographic Severity in Aortic Valve Stenosis
开发用于评估主动脉瓣狭窄超声心动图严重程度的人工智能模型
- 批准号:
23K15111 - 财政年份:2023
- 资助金额:
$ 57.17万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Imaging Substudy of the BEST Trial: Balloon-Expandable versus Self-expanding Transcatheter Heart Valve for Treatment of Symptomatic Native Aortic Valve Stenosis
最佳试验的影像学子研究:球囊扩张式与自扩张式经导管心脏瓣膜治疗症状性自体主动脉瓣狭窄
- 批准号:
460606 - 财政年份:2022
- 资助金额:
$ 57.17万 - 项目类别:
Operating Grants
Using Claims-Based Signatures of Frailty to Support Individualized Treatment of Aortic Valve Stenosis and Coronary Artery Disease
使用基于索赔的虚弱特征来支持主动脉瓣狭窄和冠状动脉疾病的个体化治疗
- 批准号:
10363612 - 财政年份:2020
- 资助金额:
$ 57.17万 - 项目类别:
Using Claims-Based Signatures of Frailty to Support Individualized Treatment of Aortic Valve Stenosis and Coronary Artery Disease
使用基于索赔的虚弱特征来支持主动脉瓣狭窄和冠状动脉疾病的个体化治疗
- 批准号:
10545062 - 财政年份:2020
- 资助金额:
$ 57.17万 - 项目类别:
Investigating the role of CaV1.2 in aortic valve stenosis
研究 CaV1.2 在主动脉瓣狭窄中的作用
- 批准号:
10421276 - 财政年份:2020
- 资助金额:
$ 57.17万 - 项目类别:
Investigating the role of CaV1.2 in aortic valve stenosis
研究 CaV1.2 在主动脉瓣狭窄中的作用
- 批准号:
10132390 - 财政年份:2020
- 资助金额:
$ 57.17万 - 项目类别:
Investigating the role of CaV1.2 in aortic valve stenosis
研究 CaV1.2 在主动脉瓣狭窄中的作用
- 批准号:
10611495 - 财政年份:2020
- 资助金额:
$ 57.17万 - 项目类别: