Quantitative Methods for Clinical Whole Body Dynamic PET
临床全身动态 PET 的定量方法
基本信息
- 批准号:8399088
- 负责人:
- 金额:$ 35.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-12-15 至 2015-11-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAlgorithmsBedsBiological ModelsBloodBlood specimenCalibrationCharacteristicsClinicalClinical DataColorectal CancerComputersDataData AnalysesDetectionDiagnosisEnvironmentEvaluationEvaluation StudiesFunctional ImagingGoalsHigh Performance ComputingHumanImageImaging DeviceInformation SystemsKineticsLeadLesionMeasurementMeasuresMetabolicMetastatic Neoplasm to the LiverMethodsMetricModelingMonitorMovementNatureNeoplasm MetastasisNoiseOutputPatientsPatternPerformancePhysiciansPositioning AttributePositron-Emission TomographyPrimary NeoplasmProceduresProcessPropertyProtocols documentationRadiopharmaceuticalsResolutionRunningScanningSensitivity and SpecificitySignal TransductionSimulateStagingStatistical ModelsSystemTimeTracerWeightWorkattenuationbasecancer diagnosisclinical applicationclinical practicecomputerized toolscostdisease diagnosishuman dataimaging modalityimprovedinterestmolecular imagingmultithreadingnovelnovel strategiesoncologypatient populationphysical modelresearch clinical testingtooltreatment planningtumoruptakewhole body imaging
项目摘要
DESCRIPTION (provided by applicant): Positron Emission tomography (PET) is a major molecular imaging tool in oncology, with applications ranging from diagnosis and staging to patient management. Despite the broad use of PET in the clinical environment, there is no quantitative PET imaging method available for routine clinical practice. The currently used static scan can provide a semi-quantitative measurement, standardized uptake value (SUV), for a whole body scan. However, it completely ignores the dynamic nature of radiopharmaceutical kinetics. The popular semi-quantitative dual time point method can approximate the kinetic differences at two time points by comparing activities but usually requires an extended waiting time for the second scan. The multiple time point method can calculate the net influx rate but still requires long scan duration and makes a whole body scan infeasible. The challenge of a quantitative whole body dynamic PET scan lies in how to estimate the quantitative functional values, such as net flux rate, using data from a short acquisition period, and how to accelerate the computation to make it practical in a clinical setting. We address this challenge by developing and optimizing a novel data analysis method and implementing it using a high performance computing tool. We take advantage of the linearity of Patlak graphic analysis to model the tracer activity in each voxel as a linear combination of the blood input function and its integral, weighted by the Patlak parameters including net influx rate. In addition, we derive a simplified model of the blood input function, based on the same assumptions used to derive Patlak parameters from the kinetic compartment model. We then estimate the Patlak parameters and the parameters in the blood input function in a penalized maximum likelihood estimation framework using the list mode data and its associated inhomogeneous Poisson statistical model. We also theoretically analyze the performance of our Patlak estimator in terms of noise, resolution and signal-to-noise ratio (SNR), and use the results to guide us in optimizing the scan duration and any movement of imaging bed to achieve the best SNR. The advanced estimation algorithm, along with an accurate imaging system model, can robustly compute the net influx rate using the list mode data in a short acquisition without a measured blood input function, and make whole body dynamic scans practical. Our algorithms will be implemented on an Nvidia Tesla GPU (graphics processing unit) based workstation, a new computing tool that provides computational power previously available only on a mini super computer. We will further accelerate our algorithms using a combination of efficient representation of the list mode data and the system matrix. We will evaluate the performance of the proposed method and compare it with SUV, the dual time point method, and the traditional Patlak method, using simulated and clinical data. We will use a range of performance metrics, including region of interest (ROI) bias, ROI variance, lesion detectability, and computer and human observers. This project will eventually provide a quantitative dynamic whole body PET imaging protocol that can potentially improve the sensitivity and specificity of PET imaging in oncology.
描述(由申请人提供):正电子发射断层扫描(PET)是肿瘤学中的主要分子成像工具,应用范围从诊断和分期到患者管理。尽管PET在临床环境中广泛使用,但常规临床实践中没有可用的定量PET成像方法。目前使用的静态扫描可以为全身扫描提供半定量测量,标准化摄取值(SUV)。然而,它完全忽略了放射性药物动力学的动态性质。流行的半定量双时间点方法可以通过比较活性来近似两个时间点的动力学差异,但通常需要延长第二次扫描的等待时间。多时间点方法可以计算净流入率,但仍然需要长的扫描持续时间,使全身扫描不可行。定量全身动态PET扫描的挑战在于如何使用来自短采集周期的数据来估计定量功能值(例如净通量率),以及如何加速计算以使其在临床环境中实用。我们通过开发和优化一种新的数据分析方法并使用高性能计算工具实现它来应对这一挑战。我们利用Patlak图形分析的线性,将每个体素中的示踪剂活性建模为血液输入函数及其积分的线性组合,由包括净流入率的Patlak参数加权。此外,我们推导出一个简化的模型的血液输入函数,基于相同的假设,用于获得Patlak参数的动力学房室模型。然后,我们估计Patlak参数和参数的血液输入函数中的惩罚最大似然估计框架使用列表模式数据及其相关的非齐次泊松统计模型。我们还从理论上分析了我们的Patlak估计器在噪声,分辨率和信噪比(SNR)方面的性能,并使用结果来指导我们优化扫描持续时间和成像床的任何移动,以实现最佳SNR。先进的估计算法,沿着一个精确的成像系统模型,可以在没有测量的血液输入函数的情况下,在短采集中使用列表模式数据稳健地计算净流入率,并使全身动态扫描变得实用。我们的算法将在基于Nvidia Tesla GPU(图形处理单元)的工作站上实现,这是一种新的计算工具,可提供以前仅在迷你超级计算机上提供的计算能力。我们将使用列表模式数据和系统矩阵的有效表示的组合来进一步加速我们的算法。我们将评估所提出的方法的性能,并将其与SUV,双时间点方法和传统的Patlak方法进行比较,使用模拟和临床数据。我们将使用一系列性能指标,包括感兴趣区域(ROI)偏差、ROI方差、病变可检测性以及计算机和人类观察员。该项目最终将提供一种定量动态全身PET成像方案,可能会提高PET成像在肿瘤学中的灵敏度和特异性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Quanzheng Li其他文献
Quanzheng Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Quanzheng Li', 18)}}的其他基金
Deep learning Based Phenotyping and Treatment Optimization for Heart Failure with Preserved Ejection Fraction
基于深度学习的射血分数保留的心力衰竭表型分析和治疗优化
- 批准号:
10444412 - 财政年份:2022
- 资助金额:
$ 35.13万 - 项目类别:
Deep learning Based Phenotyping and Treatment Optimization for Heart Failure with Preserved Ejection Fraction
基于深度学习的射血分数保留的心力衰竭表型分析和治疗优化
- 批准号:
10592341 - 财政年份:2022
- 资助金额:
$ 35.13万 - 项目类别:
TR&D2: Advanced Statistical Image Reconstruction & Physics Informed Artificial Intelligence for Quantitative PET/MR
TR
- 批准号:
10651773 - 财政年份:2017
- 资助金额:
$ 35.13万 - 项目类别:
Unified Joint Statistical Reconstruction of PET & MR
PET统一联合统计重建
- 批准号:
10263164 - 财政年份:2017
- 资助金额:
$ 35.13万 - 项目类别:
Superhigh Sensitivity SPECT Imaging with Dense Camera Arrays
使用密集相机阵列进行超高灵敏度 SPECT 成像
- 批准号:
8702789 - 财政年份:2014
- 资助金额:
$ 35.13万 - 项目类别:
Superhigh Sensitivity SPECT Imaging with Dense Camera Arrays
使用密集相机阵列进行超高灵敏度 SPECT 成像
- 批准号:
8814222 - 财政年份:2014
- 资助金额:
$ 35.13万 - 项目类别:
Quantitative Methods for Clinical Whole Body Dynamic PET
临床全身动态 PET 的定量方法
- 批准号:
8237421 - 财政年份:2011
- 资助金额:
$ 35.13万 - 项目类别:
Quantitative Methods for Clinical Whole Body Dynamic PET
临床全身动态 PET 的定量方法
- 批准号:
8588924 - 财政年份:2011
- 资助金额:
$ 35.13万 - 项目类别:
An Integrated Statistical Framework for Lesion Detection Using Dynamic PET
使用动态 PET 进行病变检测的综合统计框架
- 批准号:
8421579 - 财政年份:2010
- 资助金额:
$ 35.13万 - 项目类别:
An Integrated Statistical Framework for Lesion Detection Using Dynamic PET
使用动态 PET 进行病变检测的综合统计框架
- 批准号:
7877521 - 财政年份:2010
- 资助金额:
$ 35.13万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 35.13万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 35.13万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 35.13万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 35.13万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 35.13万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 35.13万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 35.13万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 35.13万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 35.13万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 35.13万 - 项目类别:
Research Grant