An Integrated Statistical Framework for Lesion Detection Using Dynamic PET
使用动态 PET 进行病变检测的综合统计框架
基本信息
- 批准号:7877521
- 负责人:
- 金额:$ 21.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-03-01 至 2012-02-29
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAlgorithmsApplications GrantsBiomedical EngineeringBloodCalibrationCharacteristicsClinicalClinical TrialsColorectal CancerComputer AssistedComputersDataData SetDeoxyglucoseDetectionDiagnosticDiagnostic Neoplasm StagingDiseaseEnrollmentEnsureEvaluationExcisionFamilyFluorineGenerationsGoalsHumanImageImaging DeviceIndividualLeadLesionLiverLocationMalignant NeoplasmsMapsMeasuresMetastatic LesionMetastatic Neoplasm to the LiverMethodsModelingMonitorNormal tissue morphologyOperative Surgical ProceduresOutcomePathologyPatientsPerformancePhasePlug-inPopulationPositron-Emission TomographyProbabilityProceduresPropertyProtocols documentationReceiver Operating CharacteristicsResearch Project GrantsResolutionScanningSensitivity and SpecificitySimulateStagingSystemTechniquesTestingTimeTissuesTracerTrainingTreatment CostUltrasonographyVariantVisualbasecancer diagnosisdesigndetectordisease diagnosisimage reconstructionimprovedinterestmolecular imagingnovelphysical modelpopulation basedpublic health relevanceradiologistreconstructionresponsesimulationsuccesstheoriestime usetooltreatment planningtumoruptake
项目摘要
DESCRIPTION (provided by applicant): Positron emission tomography (PET) with FDG has become a widely accepted and used clinical molecular imaging tool for disease diagnosis, staging, treatment planning, management and evaluation. Although conventional static PET imaging provides high sensitivity in tumor detection, further improvement is important since even a small percentage of false negatives can have a major impact on treatment, cost and outcome. Visual inspection of static images is potentially inaccurate for small tumors due to limited spatial resolution and low lesion-to-background contrast. Computer aided detection (CAD) combined with use of dynamic PET data could assist in improving sensitivity and specificity for these small lesions. The goal of this exploratory Bioengineering Research Grant proposal is to investigate such a CAD method for dynamic FDG PET that integrates image reconstruction, lesion detection and thresholding in a statistical framework. The method will be optimized based on the properties of the dynamic PET data and the imaging system, and is designed to use standard dynamic data sets without the need for a measured blood input function. The CAD system will automatically provide a voxel-wise statistical map indicating probable lesion locations. By using a statistical detection algorithm that combines spatial and temporal information, we expect to be able to improve detection of small lesions that are not clearly visible in standard static scans and thereby provide improved diagnostic information to the radiologist. We will apply our maximum a posteriori (MAP) approach to PET image reconstruction to data from the new generation of clinical scanners, and optimize performance in terms of modeling and calibration procedures based on the characteristics of the scanner. The resulting images of estimated dynamic tracer uptake, as well as their approximate covariance, computed based on a theoretical analysis of the reconstruction algorithm, will be used as input to a matched subspace detector. This detector characterizes typical tumor and normal tissue dynamics using linear subspaces in combination with a generalized likelihood ratio test, to generate a voxel-wise statistical map indicating the likelihood of tumor presence or absence. Typical tumor and normal tissue subspaces will be obtained using a training dataset from multiple subjects with tumor and normal tissue regions of interest (ROIs) identified by a radiologist. The statistical detection map will then be thresholded to obtain a voxel-wise indication of likely tumor locations, while controlling for the effects of multiple comparisons. We will implement, optimize and perform preliminary evaluation of this CAD approach for dynamic data collected at USC using the Siemens Biograph TruePoint scanner. Evaluation will use Monte Carlo simulation and retrospective human studies. Human studies will focus on patients with liver metastases from colorectal cancer who are enrolled in an ongoing clinical trial. Serial imaging studies, with subsequent surgical resection and independent verification through pathology and intraoperative ultrasound, will provide a basis to evaluate the performance of our CAD detection approach.
PUBLIC HEALTH RELEVANCE: Positron Emission Tomography (PET) has been widely used in cancer diagnosis, staging, treatment planning, management and evaluation. One of the main functions of PET is to detect tumors and metastatic lesions, which is conventionally done by visual inspection of a static volumetric image by a radiologist. This project is focused on using multiple images of the patient collected in a single session, in combination with a novel computer aided detection (CAD) method, to assist radiologists in detecting small tumors that may not be clearly visible using standard imaging protocols. Success of this project may lead to improved detection, staging and monitoring of metastatic disease.
描述(申请人提供):正电子发射断层扫描(PET)与FDG已成为一种广泛接受和使用的临床分子成像工具,用于疾病的诊断、分期、治疗计划、管理和评估。虽然传统的静态PET成像在肿瘤检测中具有很高的灵敏度,但进一步的改进是重要的,因为即使是很小比例的假阴性也会对治疗、成本和结果产生重大影响。对于小肿瘤,由于空间分辨率有限和病变与背景的对比度低,静态图像的视觉检查可能不准确。计算机辅助检测(CAD)结合动态PET数据的使用可以帮助提高对这些小病变的敏感性和特异性。这项探索性生物工程研究资助计划的目标是研究这样一种用于动态FDG PET的CAD方法,该方法将图像重建、病变检测和阈值处理集成在一个统计框架中。该方法将根据动态PET数据和成像系统的特性进行优化,并被设计为使用标准的动态数据集,而不需要测量血液输入功能。CAD系统将自动提供以体素为单位的统计地图,指示可能的病变位置。通过使用结合空间和时间信息的统计检测算法,我们期望能够改进对标准静态扫描中不清楚可见的小病变的检测,从而为放射科医生提供更好的诊断信息。我们将把我们的最大后验概率(MAP)方法应用于PET图像重建,以处理来自新一代临床扫描仪的数据,并根据扫描仪的特点在建模和校准过程方面优化性能。根据重建算法的理论分析计算的估计动态示踪剂摄取的结果图像及其近似协方差将用作匹配子空间探测器的输入。该探测器使用线性子空间结合广义似然比检验来表征典型的肿瘤和正常组织动力学,以生成指示肿瘤存在或不存在的可能性的体素统计地图。典型的肿瘤和正常组织子空间将使用来自具有由放射科医生识别的肿瘤和正常组织感兴趣区域(ROI)的多个受试者的训练数据集来获得。然后,统计检测图将被设置阈值,以获得可能的肿瘤位置的体素指示,同时控制多次比较的影响。我们将使用西门子Bioggraph TruePoint扫描仪对在南加州大学收集的动态数据实施、优化和执行这种CAD方法的初步评估。评估将使用蒙特卡罗模拟和回溯性人体研究。人体研究将集中在正在进行的临床试验中登记的结直肠癌肝转移患者。一系列的影像研究,以及随后的手术切除和通过病理和术中超声的独立验证,将为评估我们的CAD检测方法的性能提供基础。
公共卫生相关性:正电子发射断层扫描(PET)已广泛应用于癌症的诊断、分期、治疗计划、管理和评估。PET的主要功能之一是检测肿瘤和转移性病变,这通常是由放射科医生通过视觉检查静态体积图像来完成的。这个项目的重点是使用在一次会议中收集的患者的多个图像,结合新的计算机辅助检测(CAD)方法,以帮助放射科医生检测使用标准成像协议可能无法清楚看到的小肿瘤。该项目的成功可能会改善对转移性疾病的检测、分期和监测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Quanzheng Li其他文献
Quanzheng Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Quanzheng Li', 18)}}的其他基金
Deep learning Based Phenotyping and Treatment Optimization for Heart Failure with Preserved Ejection Fraction
基于深度学习的射血分数保留的心力衰竭表型分析和治疗优化
- 批准号:
10444412 - 财政年份:2022
- 资助金额:
$ 21.18万 - 项目类别:
Deep learning Based Phenotyping and Treatment Optimization for Heart Failure with Preserved Ejection Fraction
基于深度学习的射血分数保留的心力衰竭表型分析和治疗优化
- 批准号:
10592341 - 财政年份:2022
- 资助金额:
$ 21.18万 - 项目类别:
TR&D2: Advanced Statistical Image Reconstruction & Physics Informed Artificial Intelligence for Quantitative PET/MR
TR
- 批准号:
10651773 - 财政年份:2017
- 资助金额:
$ 21.18万 - 项目类别:
Unified Joint Statistical Reconstruction of PET & MR
PET统一联合统计重建
- 批准号:
10263164 - 财政年份:2017
- 资助金额:
$ 21.18万 - 项目类别:
Superhigh Sensitivity SPECT Imaging with Dense Camera Arrays
使用密集相机阵列进行超高灵敏度 SPECT 成像
- 批准号:
8702789 - 财政年份:2014
- 资助金额:
$ 21.18万 - 项目类别:
Superhigh Sensitivity SPECT Imaging with Dense Camera Arrays
使用密集相机阵列进行超高灵敏度 SPECT 成像
- 批准号:
8814222 - 财政年份:2014
- 资助金额:
$ 21.18万 - 项目类别:
Quantitative Methods for Clinical Whole Body Dynamic PET
临床全身动态 PET 的定量方法
- 批准号:
8237421 - 财政年份:2011
- 资助金额:
$ 21.18万 - 项目类别:
Quantitative Methods for Clinical Whole Body Dynamic PET
临床全身动态 PET 的定量方法
- 批准号:
8588924 - 财政年份:2011
- 资助金额:
$ 21.18万 - 项目类别:
Quantitative Methods for Clinical Whole Body Dynamic PET
临床全身动态 PET 的定量方法
- 批准号:
8399088 - 财政年份:2011
- 资助金额:
$ 21.18万 - 项目类别:
An Integrated Statistical Framework for Lesion Detection Using Dynamic PET
使用动态 PET 进行病变检测的综合统计框架
- 批准号:
8421579 - 财政年份:2010
- 资助金额:
$ 21.18万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 21.18万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 21.18万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 21.18万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 21.18万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 21.18万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 21.18万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 21.18万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 21.18万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 21.18万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 21.18万 - 项目类别:
Research Grant