Semi-Automating Data Extraction for Systematic Reviews
用于系统评价的半自动数据提取
基本信息
- 批准号:10443636
- 负责人:
- 金额:$ 29.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-20 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AmericanAutomationCaringClinicalCollectionConsumptionDataData ElementDatabasesDevelopmentElementsEvaluationEvidence Based MedicineEvidence based practiceFeedbackGrantHybridsIndividualInformaticsInternetLiteratureMachine LearningManualsMeasuresMedical InformaticsMetadataMethodologyMethodsModelingModern MedicineNatural Language ProcessingOutcomeOutputPaperPatient CarePopulation InterventionProcessPubMedPublicationsPublishingRegistriesReportingResearchResourcesRiskStrokeStructureSurveillance MethodsSystemTechnologyTextTextbooksTimeTrainingUnited States National Institutes of HealthUnited States National Library of MedicineUpdateVisionWorkbasecardiovascular healthdatabase structuredesignevidence baseimprovedindexinginnovationmachine learning methodnatural languageneural networknovelopen sourceprogramsprospectiveprototyperecruitrelating to nervous systemrepositoryrepository infrastructuresearch enginestructured datastudy characteristicsstudy populationsuccesssystematic reviewtoolusabilityworking group
项目摘要
Summary Semi-Automating Data Extraction for Systematic Reviews (Renewal)
Evidence-based Medicine (EBM) aims to inform patient care using all available evidence.
Realizing this aim in practice would require access to concise, comprehensive, and up-to-date
structured summaries of the evidence relevant to a particular clinical question. Systematic
reviews of biomedical literature aim to provide such summaries, and are a critical component of
the EBM arsenal and modern medicine more generally. However, such reviews are extremely
laborious to conduct. Furthermore, owing to the rapid expansion of the biomedical literature
base, they tend to go out of date quickly as new evidence emerges. These factors hinder the
practice of evidence-based care.
In this renewal proposal, we seek to continue our ground-breaking efforts on developing,
evaluating, and deploying novel machine learning (ML) and natural language processing (NLP)
methods to automate or semi-automate the evidence synthesis process. This will extend our
innovative and successful efforts developing RobotReviewer and related technologies under the
current grant. Concretely, for this renewal we propose to move from extraction of clinically
salient data elements from individual trials to synthesis of these elements across trials. Our first
aim is to extend our ML and NLP models to produce (as one deliverable) a publicly available,
continuously and automatically updated semi-structured evidence database, comprising
extracted data for all evidence, both published and unpublished. Unpublished trials will be
identified via trial registries.
Taking this up-to-date evidence repository as a starting point, we then propose cutting-edge ML
and NLP models that will generate first drafts of evidence syntheses, automatically. More
specifically we propose novel neural cross-document summarization models that will capitalize
on the semi-structured information automatically extracted by our existing models, in addition
to article texts. These models will be deployed in a new version of RobotReviewer, called
RobotReviewerLive, intended to be a prototype for “living” systematic reviews. To rigorously
evaluate the practical utility of the proposed methodological innovations, we will pilot their use
to support real, ongoing, exemplar living reviews.
摘要用于系统评审的半自动数据提取(续订)
循证医学(EBM)的目标是利用所有可用的证据为患者护理提供信息。
在实践中实现这一目标需要获得简明、全面和最新的
与特定临床问题相关的证据的结构化摘要。系统化
生物医学文献综述旨在提供这样的总结,并且是
循证医学武器库和更广泛的现代医学。然而,这样的审查是非常
指挥起来很费力。此外,由于生物医学文献的迅速膨胀
随着新证据的出现,它们往往很快就会过时。这些因素阻碍了
循证护理的实践。
在这项更新建议中,我们寻求继续我们的开创性努力,
评估和部署新型机器学习(ML)和自然语言处理(NLP)
自动化或半自动化证据合成过程的方法。这将延长我们的
创新和成功的努力在开发RobotReviewer和相关技术方面
目前的拨款。具体地说,对于这次更新,我们建议从临床提取
从个别试验的显著数据元素到跨试验的这些元素的合成。我们的第一次
目标是扩展我们的ML和NLP模型,以生产(作为一个可交付件)公开可用的、
持续自动更新的半结构化证据数据库,包括
提取了所有证据的数据,包括已发布和未发布的。未发表的试验将是
通过试验登记处确认。
以这个最新的证据仓库为起点,我们提出了尖端的ML
以及将自动生成证据合成初稿的NLP模型。更多
具体地说,我们提出了新的神经跨文档摘要模型,该模型将
关于我们现有模型自动提取的半结构化信息,此外
来写文章。这些模型将部署在名为RobotReviewer的新版本中
RobotReviewerLive,旨在成为“活的”系统评估的原型。严谨地
评估提出的方法创新的实际效用,我们将对其进行试点使用
以支持真实的、持续的、模范的生活评论。
项目成果
期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning Disentangled Representations of Texts with Application to Biomedical Abstracts.
- DOI:10.18653/v1/d18-1497
- 发表时间:2018-10
- 期刊:
- 影响因子:0
- 作者:Jain S;Banner E;van de Meent JW;Marshall IJ;Wallace BC
- 通讯作者:Wallace BC
A Neural Candidate-Selector Architecture for Automatic Structured Clinical Text Annotation.
- DOI:10.1145/3132847.3132989
- 发表时间:2017-11
- 期刊:
- 影响因子:0
- 作者:Singh G;Marshall IJ;Thomas J;Shawe-Taylor J;Wallace BC
- 通讯作者:Wallace BC
Automatically Summarizing Evidence from Clinical Trials: A Prototype Highlighting Current Challenges
- DOI:10.48550/arxiv.2303.05392
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:S. Ramprasad;Denis Jered McInerney;Iain J. Marshal;Byron Wallace
- 通讯作者:S. Ramprasad;Denis Jered McInerney;Iain J. Marshal;Byron Wallace
Machine learning reduced workload with minimal risk of missing studies: development and evaluation of a randomized controlled trial classifier for Cochrane Reviews.
- DOI:10.1016/j.jclinepi.2020.11.003
- 发表时间:2021-05
- 期刊:
- 影响因子:7.2
- 作者:Thomas J;McDonald S;Noel-Storr A;Shemilt I;Elliott J;Mavergames C;Marshall IJ
- 通讯作者:Marshall IJ
What Would it Take to get Biomedical QA Systems into Practice?
- DOI:10.18653/v1/2021.mrqa-1.3
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Iain Marshall其他文献
Iain Marshall的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Iain Marshall', 18)}}的其他基金
Semi-Automating Data Extraction for Systematic Reviews
用于系统评价的半自动数据提取
- 批准号:
10199049 - 财政年份:2015
- 资助金额:
$ 29.2万 - 项目类别:
相似海外基金
Treecle - data and automation to unlock woodland creation in the UK to achieve net zero
Treecle - 数据和自动化解锁英国林地创造以实现净零排放
- 批准号:
10111492 - 财政年份:2024
- 资助金额:
$ 29.2万 - 项目类别:
SME Support
STTR Phase II: Optimized manufacturing and machine learning based automation of Endothelium-on-a-chip microfluidic devices for drug screening applications.
STTR 第二阶段:用于药物筛选应用的片上内皮微流体装置的优化制造和基于机器学习的自动化。
- 批准号:
2332121 - 财政年份:2024
- 资助金额:
$ 29.2万 - 项目类别:
Cooperative Agreement
Improving access to AI automation to support new digital offerings within Professional/Financial Services
改善对人工智能自动化的访问,以支持专业/金融服务中的新数字产品
- 批准号:
10095096 - 财政年份:2024
- 资助金额:
$ 29.2万 - 项目类别:
Collaborative R&D
Cost-Effective, AI-driven Automation Technology for Cell Culture Monitoring: Boosting Efficiency and Sustainability in Industrial Biomanufacturing and Streamlining Supply Chains
用于细胞培养监测的经济高效、人工智能驱动的自动化技术:提高工业生物制造的效率和可持续性并简化供应链
- 批准号:
10104748 - 财政年份:2024
- 资助金额:
$ 29.2万 - 项目类别:
Launchpad
Sustainable Remanufacturing solution with increased automation and recycled content in laser and plasma based process (RESTORE)
可持续再制造解决方案,在基于激光和等离子的工艺中提高自动化程度和回收内容(RESTORE)
- 批准号:
10112149 - 财政年份:2024
- 资助金额:
$ 29.2万 - 项目类别:
EU-Funded
Next-generation automation and PAT implementation for QbD and enhanced approaches for cell and gene therapy
QbD 的下一代自动化和 PAT 实施以及细胞和基因治疗的增强方法
- 批准号:
10087446 - 财政年份:2024
- 资助金额:
$ 29.2万 - 项目类别:
Collaborative R&D
SBIR Phase II: Radar-based Building Automation
SBIR 第二阶段:基于雷达的楼宇自动化
- 批准号:
2335079 - 财政年份:2024
- 资助金额:
$ 29.2万 - 项目类别:
Cooperative Agreement
Automation and cost reduction of the hardware and software components of a novel indoor sustainable vertical growing solution
新型室内可持续垂直种植解决方案的硬件和软件组件的自动化和成本降低
- 批准号:
83007861 - 财政年份:2024
- 资助金额:
$ 29.2万 - 项目类别:
Innovation Loans
Artificial intelligence coupled to automation for accelerated medicine design
人工智能与自动化相结合,加速药物设计
- 批准号:
EP/Z533038/1 - 财政年份:2024
- 资助金额:
$ 29.2万 - 项目类别:
Research Grant
Mighty Accounting - Accountancy Automation for 1-person limited companies.
Mighty Accounting - 1 人有限公司的会计自动化。
- 批准号:
10100360 - 财政年份:2024
- 资助金额:
$ 29.2万 - 项目类别:
Collaborative R&D