COINSTAC 2.0: decentralized, scalable analysis of loosely coupled data
COINSTAC 2.0:松散耦合数据的去中心化、可扩展分析
基本信息
- 批准号:10443841
- 负责人:
- 金额:$ 62.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptionAgreementAlcoholsAlgorithmsAtlasesAwarenessBrainBrain imagingCannabisClinical DataCocaineCommunitiesConsentConsent FormsCoupledDataData AggregationData PoolingData SetDecentralizationDevelopmentEnvironmentFamilyFundingGeneticGenomicsHumanIndividualInformaticsInstitutionInstitutional Review BoardsInternationalKnowledgeLanguageLearningLegalLinkLocationLogisticsMachine LearningMeasuresMethamphetamineModelingMovementNeurosciencesNicotineOpioidPerformancePhasePopulationPositioning AttributePrivacyPrivatizationProcessPublic HealthQuality ControlReproducibilityResearchResearch PersonnelResourcesRiskRunningScienceSecuritySeriesSiteSourceSource CodeStatistical BiasStructureSubstance of AbuseSystemTestingTimeTrainingUnited States National Institutes of HealthUpdateVisualizationWorkaddictionbasecloud basedcomputational platformcomputerized data processingcomputerized toolsdata harmonizationdata repositorydata reusedata sharingdata visualizationdeep learningdistributed dataimprovedlarge datasetslearning algorithmlife-long learningnegative affectneuroimagingnovelnovel strategiesopen dataopen sourcepeerprivacy preservationrepositoryscale upsubstance usesuccesssupervised learningtoolunsupervised learningusabilityvirtual
项目摘要
Project Summary/Abstract
The brain imaging community is greatly benefiting from extensive data sharing efforts currently underway.
However, there is still a major gap in that much data is still not openly shareable, which we propose to address.
In addition, current approaches to data sharing often include significant logistical hurdles both for the investigator
sharing the data (e.g. often times multiple data sharing agreements and approvals are required from US and
international institutions) as well as for the individual requesting the data (e.g. substantial computational re-
sources and time is needed to pool data from large studies with local study data). This needs to change, so that
the scientific community can create a venue where data can be collected, managed, widely shared and analyzed
while also opening up access to the (many) data sets which are not currently available (see overview on this
from our group7). The large amount of existing data requires an approach that can analyze data in a distributed
way while (if required) leaving control of the source data with the individual investigator or the data host; this
motivates a dynamic, decentralized way of approaching large scale analyses. During the previous funding
period, we developed a peer-to-peer system called the Collaborative Informatics and Neuroimaging Suite Toolkit
for Anonymous Computation (COINSTAC). Our system provides an independent, open, no-strings-attached tool
that performs analysis on datasets distributed across different locations. Thus, the step of actually aggregating
data is avoided, while the strength of large-scale analyses can be retained. During this new phase we respond
to the need for advanced algorithms such as linear mixed effects models and deep learning, by proposing to
develop decentralized models for these approaches and also implement a fully scalable cloud-based framework
with enhanced security features. To achieve this, in Aim 1, we will incorporate the necessary functionality to
scale up analyses via the ability to work with either local or commercial private cloud environments, together with
advanced visualization, quality control, and privacy and security features. This suite of new functions will open
the floodgates for the use of COINSTAC by the larger neuroscience community to enable new discovery and
analysis of unprecedented amounts of brain imaging data located throughout the world. We will also improve
usability, training materials, engage the community in contributing to the open source code base, and ultimately
facilitate the use of COINSTAC's tools for additional science and discovery in a broad range of applications. In
Aim 2 we will extend the framework to handle powerful algorithms such as linear mixed effects models and deep
learning, and to perform meta-learning for leveraging and updating fit models. And finally, in Aim 3, we will test
this new functionality through a partnership with the worldwide ENIGMA addiction group, which is currently not
able to perform advanced machine learning analyses on data that cannot be centrally located. We will evaluate
the impact of 6 main classes of substances of abuse (e.g. methamphetamines, cocaine, cannabis, nicotine,
opiates, alcohol and their combinations) using the new developed functionality.
3
项目总结/摘要
大脑成像社区正在从目前正在进行的广泛数据共享工作中受益匪浅。
然而,仍然存在一个重大差距,即许多数据仍然不能公开共享,我们建议解决这个问题。
此外,目前的数据共享方法通常包括对研究者和研究者的重大后勤障碍。
共享数据(例如,通常需要美国和
国际机构)以及请求数据的个人(例如,大量计算重新计算,
将来自大型研究的数据与当地研究数据合并需要资源和时间)。这种情况需要改变,
科学界可以创建一个场所,在那里可以收集、管理、广泛共享和分析数据
同时还开放了对目前不可用的(许多)数据集的访问(见关于这一点的概述
从我们组7)。大量的现有数据需要一种可以在分布式环境中分析数据的方法。
同时(如需要)将源数据的控制权留给个体研究者或数据托管人;这
激发了一种动态的、分散的方式来进行大规模分析。在过去的融资中
在此期间,我们开发了一个点对点系统,称为协作信息学和神经成像套件工具包
匿名计算(CONOMAAC)我们的系统提供了一个独立的、开放的、没有附加条件的工具
对分布在不同位置的数据集进行分析。因此,实际聚合的步骤
避免了数据,同时可以保留大规模分析的优势。在这个新的阶段,我们回应
对线性混合效应模型和深度学习等高级算法的需求,提出
为这些方法开发分散的模型,并实施完全可扩展的基于云的框架
具有增强的安全功能。为了实现这一目标,在目标1中,我们将纳入必要的功能,
通过使用本地或商业私有云环境的能力来扩展分析,以及
先进的可视化、质量控制以及隐私和安全功能。这套新功能将在
为更大的神经科学界使用CONOMAC打开了闸门,以实现新的发现,
分析了世界各地前所未有的大量大脑成像数据。我们还将完善
可用性,培训材料,让社区为开源代码库做出贡献,最终
促进使用CONORAC的工具,在广泛的应用中进行额外的科学和发现。在
目标2我们将扩展框架来处理强大的算法,如线性混合效应模型和深度
学习,并执行元学习以利用和更新拟合模型。最后,在目标3中,我们将测试
这项新功能是通过与全球ENIGMA成瘾组织合作实现的,该组织目前还没有
能够对无法集中定位的数据执行高级机器学习分析。我们将评估
6大类滥用物质(如甲基苯丙胺、可卡因、大麻、尼古丁、
鸦片制剂、酒精及其组合)。
3
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
VINCE D CALHOUN其他文献
VINCE D CALHOUN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('VINCE D CALHOUN', 18)}}的其他基金
ENIGMA-COINSTAC: Advanced Worldwide Transdiagnostic Analysis of Valence System Brain Circuits
ENIGMA-COINSTAC:价系统脑回路的先进全球跨诊断分析
- 批准号:
10410073 - 财政年份:2019
- 资助金额:
$ 62.87万 - 项目类别:
ENIGMA-COINSTAC: Advanced Worldwide Transdiagnostic Analysis of Valence System Brain Circuit
ENIGMA-COINSTAC:价系统脑回路的先进全球跨诊断分析
- 批准号:
10656608 - 财政年份:2019
- 资助金额:
$ 62.87万 - 项目类别:
ENIGMA-COINSTAC: Advanced Worldwide Transdiagnostic Analysis of Valence System Brain CircuitsPD
ENIGMA-COINSTAC:价系统脑回路的先进全球跨诊断分析PD
- 批准号:
10252236 - 财政年份:2019
- 资助金额:
$ 62.87万 - 项目类别:
A decentralized macro and micro gene-by-environment interaction analysis of substance use behavior and its brain biomarkers
物质使用行为及其大脑生物标志物的分散宏观和微观基因与环境相互作用分析
- 批准号:
10197867 - 财政年份:2019
- 资助金额:
$ 62.87万 - 项目类别:
A decentralized macro and micro gene-by-environment interaction analysis of substance use behavior and its brain biomarkers
物质使用行为及其大脑生物标志物的分散宏观和微观基因与环境相互作用分析
- 批准号:
10443779 - 财政年份:2019
- 资助金额:
$ 62.87万 - 项目类别:
A decentralized macro and micro gene-by-environment interaction analysis of substance use behavior and its brain biomarkers
物质使用行为及其大脑生物标志物的分散宏观和微观基因与环境相互作用分析
- 批准号:
9811339 - 财政年份:2019
- 资助金额:
$ 62.87万 - 项目类别:
Flexible multivariate models for linking multi-scale connectome and genome data in Alzheimer's disease and related disorders
用于连接阿尔茨海默病和相关疾病的多尺度连接组和基因组数据的灵活多变量模型
- 批准号:
10157432 - 财政年份:2019
- 资助金额:
$ 62.87万 - 项目类别:
A decentralized macro and micro gene-by-environment interaction analysis of substance use behavior and its brain biomarkers
物质使用行为及其大脑生物标志物的分散宏观和微观基因与环境相互作用分析
- 批准号:
10645089 - 财政年份:2019
- 资助金额:
$ 62.87万 - 项目类别:
COINSTAC: decentralized, scalable analysis of loosely coupled data
COINSTAC:松散耦合数据的去中心化、可扩展分析
- 批准号:
9268713 - 财政年份:2015
- 资助金额:
$ 62.87万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 62.87万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 62.87万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 62.87万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 62.87万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 62.87万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 62.87万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 62.87万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 62.87万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 62.87万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 62.87万 - 项目类别:
Standard Grant