Mechanisms of Alcohol Withdrawal
戒酒机制
基本信息
- 批准号:10443839
- 负责人:
- 金额:$ 42.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-10 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:Action PotentialsAddressAlcohol withdrawal syndromeAlcoholsAnimal ModelApicalBehaviorBehavioralBenzodiazepinesBrainChronicClinicalComplexCoupledDangerousnessDataDendritesDependenceDevelopmentDiagnosisDoseDrug Metabolic DetoxicationDrug TargetingEpilepsyEthanolFRAP1 geneGrantHippocampus (Brain)In VitroIncidenceIon Channel ProteinKnock-outKnowledgeLeadLongevityMediatingMembraneMessenger RNAMidline Thalamic NucleiMissionModelingMolecularMouse StrainsNatureNeuronsOrganismOutcomePathway interactionsPatternPharmaceutical PreparationsPharmacologyPopulationPotassium ChannelPredispositionPreparationPreventionProceduresPropertyProtein Synthesis InhibitorsProteinsPublic HealthPyramidal CellsResearchSeizuresSignal TransductionSirolimusStructureSubstance Withdrawal SyndromeSubstance abuse problemSymptomsSynapsesT-Type Calcium ChannelsTestingThalamic structureTimeToxic effectTranslationsUnited States National Institutes of HealthUp-RegulationWithdrawalWithdrawal SymptomWorkaddiction liabilityalcohol abuse therapyalcohol effectalcohol exposurealcohol related problemalcohol use disorderdrinkingexperienceexperimental studygain of functionimprovedin vivonervous system disordernetwork modelsneural circuitneuronal cell bodynoveloptogeneticspreventresponsesuccesstransmission processvoltagevoltage clamp
项目摘要
PROJECT SUMMARY
Alcohol withdrawal (WD) produces a range of dangerous clinical symptoms, including intense seizures.
Hyperexcitability underlying seizures is produced by an array of intrinsic membrane properties that are
disrupted by ethanol (EtOH). Prior work has demonstrated that chronic EtOH exposure and WD produce an
up-regulation of ion channel proteins and a gain of function that promotes WD seizure. A remaining gap in
our understanding of WD-related seizure is a testable model that places cellular changes in a network
context. WD produces upregulation and increased bursting in midline thalamic nuclei. In hippocampus,
mammalian target of rapamycin Complex 1 (mTORC1) is activated in CA1 neurons during WD, represses
translation of Kv1.1, and results in reduced inhibition that we hypothesize will allow invasion of thalamic
bursts and increased epileptiform population discharges. We have developed a new model of network
excitability that will allow us to study the emergence, time course and molecular underpinnings of EtOH WD
hyperexcitability and seizure. We will address the following aims: In Aim 1, we will determine the intrinsic
properties contributing to membrane hyperexcitability in midline thalamus and CA1 due to ethanol WD
seizure. Using voltage clamp recordings in an in vitro preparation coupled with pharmacological approaches,
we will determine whether epileptiform discharges in WD are ultimately dependent on a progressive
imbalance between excitatory burst discharges in thalamus (which depend on PKC), and reduced K+ currents
in CA1 pyramidal cells (which are controlled by mTOR). In Aim 2, we will Determine important regulators of
dendritic excitability in thalamus and CA1 in EtOH WD seizure. mTOR signaling is implicated in the
development of spontaneous seizures in epilepsy, and we show data that it is active during WD. Using
molecular approaches, we will toggle mTOR activity in the presence and absence of protein synthesis
inhibitors. We will test whether mTORC represses translation of Kv1.1, as suggested by our preliminary data.
In Aim 3, we bring together the cellular and molecular findings to determine the effects of WD-mediated
changes to network excitability and seizure susceptibility in vivo. Using a novel optogenetic approach, we will
test whether stimulation of the thalamo-HC pathway during WD will elicit enhanced epileptiform activity
compared to controls that will depend on patterned activity at facilitated CA1 synapses. We expect that
disruptions of mTORC1 will modify or reverse WD-mediated excitability. Seizure threshold is significantly
reduced during repeated EtOH WD and we will use this fact to test the hypothesis that drugs effective against
WD-induced hyper-excitability will also be effective at raising seizure thresholds to baseline levels. Success in
these experiments will provide a more comprehensive understanding of how brief spindle episodes and spike
wave complexes promote or support tonic-clonic WD seizures – which could lead to the identification of novel
pathways and associated drug targets that will provide a means to prevent WD seizure, and to more effectively
treat it.
项目摘要
戒酒(WD)会产生一系列危险的临床症状,包括强烈的癫痫发作。
过度刺激性癫痫发作是由一系列内在膜特性产生的
被乙醇(ETOH)破坏。先前的工作表明,慢性EtOH暴露和WD产生
离子通道蛋白的上调和促进WD癫痫发作的功能增长。剩下的差距
我们对与WD相关的癫痫发作的理解是一个可测试的模型,该模型将细胞变化置于网络中
语境。 WD在中线丘脑核中产生上调和爆发增加。在海马中,
雷帕霉素络合物1(MTORC1)的哺乳动物靶标在WD期间在CA1神经元中激活
KV1.1的翻译,并导致我们假设的抑制作用减少将允许入侵丘脑
爆发并增加了癫痫样人口排放。我们已经开发了一种新的网络模型
兴奋性将使我们能够研究ETOH WD的出现,时间过程和分子基础
过度兴奋和癫痫发作。我们将解决以下目标:在AIM 1中,我们将确定固有的
由于乙醇WD引起的中线和CA1的膜过度刺激性的特性
在体外制备中使用电压夹记录,加上药物方法,
我们将确定WD中的癫痫样放电是否最终取决于渐进性
丘脑中的兴奋性爆发放电(取决于PKC)与k+电流减少之间的不平衡
在CA1锥体细胞中(由MTOR控制)。在AIM 2中,我们将确定
thalamus和ca1的树突状兴奋性。 MTOR信号与
发育癫痫发作的发作的发展,我们显示数据在WD期间具有活性。使用
分子方法,我们将在存在和不存在蛋白质合成的情况下切换MTOR活性
抑制剂。我们将测试MTORC是否反映了我们的初步数据所建议的KV1.1的翻译。
在AIM 3中,我们将细胞和分子发现汇总在一起,以确定WD介导的影响
在体内改变网络令人兴奋性和癫痫发作的敏感性。使用一种新型的光遗传学方法,我们将
测试WD期间丘脑-HC途径的刺激是否会引起增强的癫痫表现活性
与将依赖于促进的CA1突触时具有图案活动的对照组相比。我们期望这一点
MTORC1的破坏将修改或反向WD介导的令人兴奋。癫痫发作阈值显着
在重复ETOH WD期间减少了
WD诱导的高启示性也将有效地将癫痫发作阈值提高到基线水平。成功
这些实验将对简短的主轴发作和尖峰有更全面的了解
波络合物促进或支持强直性WD癫痫发作,这可能导致新颖的鉴定
途径和相关的药物靶标,可以提供一种防止WD癫痫发作的方法,并更有效地
对待它。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DWAYNE W GODWIN其他文献
DWAYNE W GODWIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DWAYNE W GODWIN', 18)}}的其他基金
Evaluating Gene Therapy Strategies to Treat Epilepsy Using a Novel Optogenetic Measure of Network Excitability and Seizure Susceptibility
使用网络兴奋性和癫痫易感性的新型光遗传学测量方法评估治疗癫痫的基因治疗策略
- 批准号:
10215636 - 财政年份:2020
- 资助金额:
$ 42.98万 - 项目类别:
Evaluating Gene Therapy Strategies to Treat Epilepsy Using a Novel Optogenetic Measure of Network Excitability and Seizure Susceptibility
使用网络兴奋性和癫痫易感性的新型光遗传学测量方法评估治疗癫痫的基因治疗策略
- 批准号:
10057595 - 财政年份:2020
- 资助金额:
$ 42.98万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目