Evaluating Gene Therapy Strategies to Treat Epilepsy Using a Novel Optogenetic Measure of Network Excitability and Seizure Susceptibility
使用网络兴奋性和癫痫易感性的新型光遗传学测量方法评估治疗癫痫的基因治疗策略
基本信息
- 批准号:10057595
- 负责人:
- 金额:$ 20.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-15 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AblationAction PotentialsAnimalsAreaAstrocytesBehaviorBehavioralBrainBuffersCellsChronicCognitiveConsequentialismCustomDetectionDiagnosisDoseEpilepsyEpileptogenesisEquilibriumExcisionGap JunctionsGenerationsGlial Fibrillary Acidic ProteinHippocampus (Brain)ImpairmentImplantIndividualInterventionKnowledgeLengthLesionLocationMeasurementMeasuresMethodsMissionModelingMonitorMusNatureNeuronsOrganismOutcomePharmacologyPhysiologyPilocarpinePopulationPotassiumPotassium ChannelPredispositionPreventionProbabilityProductionPublic HealthRecurrenceResearchResponse to stimulus physiologyScreening procedureSeizuresSiteSleepSpeedStatus EpilepticusStimulusStructureSupporting CellSynapsesSystemTechniquesTestingTherapeuticTherapeutic InterventionTimeTrainingUnited States National Institutes of HealthVoltage-Gated Potassium ChannelWorkadeno-associated viral vectorbaseclinical applicationdesignexperimental studyextracellularfunctional disabilitygene therapyimprovednervous system disordernoveloptogeneticsoverexpressionpre-clinicalpre-clinical researchpreventpromoterrecruitrelating to nervous systemresponseside effectsuccesstargeted deliverytargeted treatmenttherapeutic genetreatment optimizationtreatment strategyuptake
项目摘要
Project Summary
Gene therapy is an emerging treatment strategy for epilepsy that promises to dampen activity in specific
seizure related circuitry in order to prevent or lessen the intensity of seizures. Finding the appropriate target
for delivery represents a significant challenge for preclinical seizure models. In order to optimize delivery
parameters, multiple strategies, locations, and doses must be compared. We have developed a novel screening
tool that uses optogenetic intensity-response curves to precisely determine thresholds for population discharge
(aka. interictal spikes), the oPDT. Once this threshold is known, suprathreshold stimulus trains of varying
length can be used to determine an after discharge threshold, a measure of seizure susceptibility. These two
metrics can be collected in the same animals, compared, and tracked. Thresholds vary predictably with
behavioral state (sleep/wake), but are stable over time allowing for multiple within subject experiments. A
chronic multi-site array in hippocampus and connected structures allows for detection of network wide
stimulus responses and also continuous monitoring of normal activity. We propose to test and optimize two
promising gene therapy strategies using our optogenetic thresholding technique, in non-epileptic animals, in
order to assess therapeutic potential. Kv1.1 overexpression in neurons reduces excitability by raising the
functional threshold for activation and decreasing burst production. Kir4.1 overexpression in astrocytes
improves their ability to absorb extracellular K+, preventing K+ build up and the resulting ictogenesis. In Aim
1, we will locate effective target areas and optimize the dose of Kv1.1 in order to balance efficacy
with impairment of normal function. An AAV vector developed by our collaborator Edward Perez-Reyes
will be used to deliver Kv1.1. Baseline activity, the oPDT, and the oADT will be tracked over time with multiple
measurements taken before expression occurs (<2 weeks), while expression builds (2-6 weeks), and when
expression levels stabilize (>6 weeks). Changes in these metrics over time will reveal important information
about the circuit level effects of Kv1.1 overexpression and its viability as a treatment for epilepsy. In Aim 2, we
will determine if Kir4.1 overexpression in astrocytes is sufficient to reduce seizure
suseptability. An AAV vector specific for astrocytes (using the GFAP promoter), will be used to overexpress
Kir4.1. Success in these experiments will help to identify potential targets for therapeutic intervention, assess
the therapeutic window, and provide critical clues about the nature of population discharge and seizure
generation.
项目摘要
基因治疗是一种新兴的癫痫治疗策略,有望抑制特定疾病的活动。
癫痫发作相关的回路,以防止或减轻癫痫发作强度。找到合适的目标
对于临床前癫痫模型来说,这是一个巨大的挑战。为了优化交付
必须对参数、多种策略、位置和剂量进行比较。我们已经开发出一种新的筛选器
使用光遗传强度-响应曲线精确确定种群放电阈值的工具
(又名。发作间期棘波),OPDT。一旦知道这个阈值,各种不同的阈值上的刺激序列
长度可以用来确定后放电阈值,这是一种衡量癫痫敏感度的指标。这两个
可以在相同的动物身上收集、比较和跟踪指标。阈值可预测地随
行为状态(睡眠/清醒),但随着时间的推移保持稳定,允许在受试者内进行多次实验。一个
海马体和连接结构中的慢性多点阵列允许检测整个网络
刺激反应以及对正常活动的持续监测。我们建议测试和优化两个
在非癫痫动物中,使用我们的光遗传阈值技术进行基因治疗的策略前景看好
以评估治疗潜力。Kv1.1在神经元中的过表达通过增加
激活和减少突发性生产的功能阈值。KIR4.1在星形胶质细胞中的过表达
提高他们吸收细胞外K+的能力,防止K+积聚和由此导致的细胞分裂。在AIM
1、我们将定位有效靶区,优化Kv1.1的剂量,以平衡疗效
并有正常功能损害。由我们的合作者Edward Perez-Reyes开发的AAV载体
将用于交付Kv1.1。基准活动、oPDT和oADT将随着时间的推移通过
在表达发生前(<;2周)、在表达建立时(2-6周)以及何时进行测量
表达水平稳定(>;6周)。随着时间的推移,这些指标的变化将揭示重要信息
关于Kv1.1过表达的电路水平效应及其作为癫痫治疗的可行性。在目标2中,我们
将确定Kir4.1在星形胶质细胞中的过度表达是否足以减少癫痫发作
疑虑重重。针对星形胶质细胞的AAV载体(使用GFAP启动子)将用于过表达
KIR4.1。这些实验的成功将有助于确定治疗干预的潜在靶点,评估
治疗窗口,并提供有关人群放电和癫痫发作性质的关键线索
一代。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DWAYNE W GODWIN其他文献
DWAYNE W GODWIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DWAYNE W GODWIN', 18)}}的其他基金
Evaluating Gene Therapy Strategies to Treat Epilepsy Using a Novel Optogenetic Measure of Network Excitability and Seizure Susceptibility
使用网络兴奋性和癫痫易感性的新型光遗传学测量方法评估治疗癫痫的基因治疗策略
- 批准号:
10215636 - 财政年份:2020
- 资助金额:
$ 20.21万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 20.21万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 20.21万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 20.21万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 20.21万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 20.21万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 20.21万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 20.21万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 20.21万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 20.21万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 20.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)