RNA thermometers and their role in regulating Bacillus subtilis gene expression
RNA温度计及其在调节枯草芽孢杆菌基因表达中的作用
基本信息
- 批准号:10311971
- 负责人:
- 金额:$ 5.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2021-09-30
- 项目状态:已结题
- 来源:
- 关键词:Anti-Bacterial AgentsBacillus subtilisBacteriaBacterial GenesBacterial RNABindingBiologicalBiological AssayChemicalsClassificationComplexComputing MethodologiesDataElementsEnvironmentGene ExpressionGene Expression RegulationGenetic TranscriptionGenomeGoalsGrowthHeat-Shock ResponseHigh temperature of physical objectIn VitroKnowledgeLaboratoriesMethodsModelingPasteurella pseudotuberculosisPathogenicityRNARNA ProbesReporterReportingResearchRibosomesRoleSeriesSoilStressStructureTechniquesTemperatureTemperature SenseTestingThermometersTimeTranscriptVirulenceWorkattenuationcold temperaturedigitalenvironmental changeexperienceextreme temperaturegenome-widehuman pathogenin vivoinsightinterestmeltingnext generation sequencingnovelpreventresponsetranscriptome
项目摘要
Project Summary/Abstract
The long-term goal of this work is to understand the virulence and heat shock responses by which bacteria
survive environmental changes. Bacteria respond rapidly to changes by regulating gene expression through an
active and complex transcriptome. Bacterial genes are often regulated by temperature-induced changes in
RNA structure, which are termed `RNA thermometers' (RNATs). RNATs often function by forming a structure
that sequesters the Shine-Dalgarno (SD) sequence, thereby preventing ribosome binding. Discovery and
verification of RNATs has historically been conducted by computational methods and in vitro studies. A gap in
knowledge exists for understanding RNAT folding in vivo, and the dynamic ability of these structures to control
gene expression. To fill this gap, global genome-wide in vivo structure probing will be applied using a method
recently developed in this laboratory called Structure-seq2. This technique will be used to probe the
transcriptome of Bacillus subtilis, a model Gram-positive bacterial species. While pioneering work led to the
description of the first RNATs, using in vivo genome-wide techniques the proposed work will identify RNATs
throughout the transcriptome, not just those near SD sequences. Using Structure-seq2 the following Aims will
be accomlished: (1) Probe the structural landscape of the B. subtilis transcriptome at low and high
temperatures to discover RNA thermometers. RNA structure is known to change in response to
temperature. This phenomenon will be explored in the B. subtilis transcriptome. As B. subtilis is a soil
bacterium, high and low temperatures will be used to replicate the extremes of natural growth in the
environment. Testing will begin at low and high temperatures of 23°C and 44°C to identify RNA structures that
change under these different conditions. This work is supported by preliminary data. (2) Classify diverse
bacterial RNA thermometers genome-wide at a series of temperatures. No RNA thermometers have been
experimentally characterized from B. subtilis, although many are predicted throughout the genome. By
conducting Structure-seq2 at a series of growth temperatures, RNATs will be discovered that have different
melting temperatures, function at narrow and wide temperature ranges, and have an instantaneous or gradual
response. Results from Aim 1 will be used as a guide for regions likely to contain RNATs. (3) Characterize B.
subtilis RNAT function. RNA structures that change in response to changing temperature will be tested as
thermometers using bgaB reporter assays. Regions of interest will be cloned as bgaB translational fusions to
report on gene expression, and transcriptional fusions will be used for in vitro transcription attenuation assays.
This work will result in the first classification of RNATs by temperature midpoints and sensitivity, and will reveal
novel regulatory strategies that will be identified in other bacterial species, including human pathogens.
项目摘要/摘要
这项工作的长期目标是了解细菌的病毒和热冲击反应
生存环境变化。细菌通过调节基因表达的变化迅速反应
主动且复杂的转录组。细菌基因通常受温度引起的变化调节
RNA结构,称为“ RNA温度计”(RNAT)。 RNAT通常通过形成结构来发挥作用
该测序者是Shine-Dalgarno(SD)序列,从而防止了核糖体结合。发现和
历史上,RNAT的验证是通过计算方法和体外研究进行的。差距
知识存在于理解体内rnat折叠的知识,以及这些结构控制的动态能力
基因表达。为了填补这一空白,将使用一种方法应用全局基因组在体内结构探测
最近在该实验室中开发的称为结构seq2。该技术将用于探测
枯草芽孢杆菌的转录组,一种模型革兰氏阳性细菌物种。开创性的工作导致
对第一个RNAT的描述,使用体内基因组全基因组技术拟议的工作将识别RNAT
通过转录组,不仅是近SD序列。使用结构seq2以下目标将
完成:(1)探测低和高的枯草芽孢杆菌转录组的结构景观
发现RNA温度计的温度。已知RNA结构会因响应而改变
温度。该现象将在枯草芽孢杆菌转录组中进行探讨。由于枯草芽孢杆菌是土壤
细菌,高温和低温将用于复制自然生长的极端
环境。测试将从23°C和44°C的低温和高温开始,以鉴定RNA结构
在这些不同的条件下变化。这项工作由初步数据支持。 (2)对潜水员进行分类
细菌RNA温度计在一系列温度下全基因组。没有RNA温度计
从枯草芽孢杆菌中进行了实验表征,尽管在整个基因组中都预测了许多。经过
将在一系列的生长温度下进行结构seq2,发现具有不同的RNAT
熔化温度,狭窄和宽温度范围的功能,并具有瞬时或等级
回复。 AIM 1的结果将用作可能包含RNAT的地区的指南。 (3)表征B。
枯草型功能。响应温度变化的RNA结构将被测试为
使用BGAB记者测定法。感兴趣的区域将被克隆为BGAB翻译融合到
基因表达的报告和转录融合将用于体外转录衰减分析。
这项工作将根据温度中点和灵敏度进行首次对RNAT的分类,并将揭示
新的调节策略将在其他细菌物种(包括人类病原体)中鉴定出来。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Upstream Flanking Sequence Assists Folding of an RNA Thermometer.
- DOI:10.1016/j.jmb.2022.167786
- 发表时间:2022-09-30
- 期刊:
- 影响因子:5.6
- 作者:Jolley, Elizabeth A.;Bormes, Kathryn M.;Bevilacqua, Philip C.
- 通讯作者:Bevilacqua, Philip C.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
elizabeth jolley其他文献
elizabeth jolley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
柑橘内生枯草芽孢杆菌L1-21协同果实土著细菌防控柑橘绿霉病的作用机制
- 批准号:32360707
- 批准年份:2023
- 资助金额:32.00 万元
- 项目类别:地区科学基金项目
细菌生物膜非均匀生长的多尺度力学研究
- 批准号:11772047
- 批准年份:2017
- 资助金额:62.0 万元
- 项目类别:面上项目
异戊二烯共培养清洁发酵新体系的建立和蓝细菌-大肠杆菌(或枯草芽孢杆菌)相互作用关系的研究
- 批准号:31670493
- 批准年份:2016
- 资助金额:63.0 万元
- 项目类别:面上项目
副干酪乳杆菌与枯草芽孢杆菌等菌群种间关系以及协同合作策略的研究
- 批准号:31470537
- 批准年份:2014
- 资助金额:90.0 万元
- 项目类别:面上项目
一种新的细菌间基因水平转移途径? - - 枯草芽孢杆菌细胞间遗传重组过程的基本特性研究及机理揭示
- 批准号:31270145
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
相似海外基金
Physiological and Developmental Role of Bacterial Ser/Thr Kinases
细菌丝氨酸/苏氨酸激酶的生理和发育作用
- 批准号:
10501586 - 财政年份:2022
- 资助金额:
$ 5.28万 - 项目类别:
Physiological and Developmental Role of Bacterial Ser/Thr Kinases
细菌丝氨酸/苏氨酸激酶的生理和发育作用
- 批准号:
10672307 - 财政年份:2022
- 资助金额:
$ 5.28万 - 项目类别:
Targeting bacterial cell division with small molecules and peptides
用小分子和肽靶向细菌细胞分裂
- 批准号:
10510080 - 财政年份:2022
- 资助金额:
$ 5.28万 - 项目类别:
Feasibility study of novel hand hygiene formulations against bacterial spore infection
新型手部卫生制剂对抗细菌芽孢感染的可行性研究
- 批准号:
10542696 - 财政年份:2022
- 资助金额:
$ 5.28万 - 项目类别: