Consortium for Viral Systems Biology Modeling Core
病毒系统生物学建模核心联盟
基本信息
- 批准号:10310604
- 负责人:
- 金额:$ 5.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-02-01 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmic SoftwareAlgorithmsBioinformaticsBiologicalBiologyCatalogingClinicClinicalClinical DataCommunicable DiseasesComputer softwareConsultationsDataDevelopmentEbola virusEvaluationEventEvolutionExperimental DesignsFunctional disorderGeneticGenetic DeterminismGenetic ModelsGenomicsHealthHuman ResourcesImmune responseImmunologicsLassa virusMarriageMeasurableMeasurementMeasuresMedicineModelingMonitorNational Institute of Allergy and Infectious DiseaseOutcomePathway AnalysisPatient MonitoringPeer ReviewPhylogenetic AnalysisPhysiologicalPopulationPublic HealthPublishingRecording of previous eventsReproducibilityResearchScientistStatistical AlgorithmSurvival AnalysisSystemSystems BiologyTechnologyTestingThinkingTimeTrainingValidationVariantViralViral Hemorrhagic FeversVirus DiseasesWireless Technologyadaptive immunityanalysis pipelinebioinformatics resourcebiomathematicsburden of illnesscombatdesigngenetic associationgenetic predictorsgenomic datamathematical algorithmmathematical modelmodel buildingmultidisciplinarynext generationopen sourcepathogenreconstructionresponsesensorstatisticssurvival predictiontheoriestooluser friendly softwareviral genomicsvirologyvirtual
项目摘要
Project Summary/Abstract
The Modeling Core targets the development, validation and refinement of models to predict pathogen genetic
and host immune response and physiological features affecting viral hemorrhagic fever survival and long-term
sequelae of Lassa virus (LASV) and Ebola virus (EBOV) infection. Our multidisciplinary team carries expertise
across statistical thinking, mathematical modeling, evolutionary biology and computing to leverage sequenc-
ing, immunological profiling, mobile sensor and clinical data. We provide to the Consortium for Viral Systems
Biology Cores and Projects guidance in phylogenetic reconstruction to define evolutionary trajectories and
cataloguing LASV and EBOV intra-host variants, genetic association studies mapping host determinants and,
importantly, consultation on all statistical aspects of experimental design in the Projects. Our chief innova-
tions are three-fold. First, we incorporate viral sequence evolution into predictive survival models through
the development of phylogenetic survival analysis to uncover the viral and host genetic determinants of host
time-to-event health outcomes while appropriately controlling for shared evolutionary history and incorporat-
ing adaptive immunity repertoire development. We integrate large-scale non-omics data into these survival
models using advancing computing technology to include time-dependent immunological and physiological
features arising from wireless patient monitors and clinical tests. Third, we exploit systems-level prediction
evaluation and refinement for iterative model building with internal validation, biological experimentation and
network analysis. The Core will deliver effective analysis tools enabled for real-time and scriptable use in open-
source, reproducible research and will marshall both hands-on short-courses and a regular virtual quantitative
clinic to catalyze the interactions between modeling and experimentation.
项目概要/摘要
建模核心的目标是开发、验证和完善模型以预测病原体遗传
影响病毒性出血热存活和长期的宿主免疫反应和生理特征
拉沙病毒(LASV)和埃博拉病毒(EBOV)感染的后遗症。我们的多学科团队拥有专业知识
跨越统计思维、数学建模、进化生物学和计算来利用序列
分析、免疫分析、移动传感器和临床数据。我们向病毒系统联盟提供
系统发育重建的生物学核心和项目指导,以定义进化轨迹和
对 LASV 和 EBOV 宿主内变异进行编目,绘制宿主决定因素的遗传关联研究,
重要的是,就项目中实验设计的所有统计方面进行咨询。我们的主要创新-
系统蒸发散有三重。首先,我们通过以下方式将病毒序列进化纳入预测生存模型:
系统发育生存分析的发展以揭示宿主的病毒和宿主遗传决定因素
事件发生时间的健康结果,同时适当控制共同的进化历史并纳入
荷兰国际集团适应性免疫库的发展。我们将大规模的非组学数据整合到这些生存中
使用先进计算技术的模型包括时间依赖性免疫学和生理学
无线患者监护仪和临床测试产生的功能。第三,我们利用系统级预测
通过内部验证、生物实验和迭代模型构建的评估和细化
网络分析。该核心将提供有效的分析工具,可在开放式环境中进行实时和可脚本化的使用。
来源、可重复的研究,并将安排实践短期课程和定期虚拟定量课程
临床催化建模和实验之间的相互作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marc A. Suchard其他文献
Unlocking efficiency in real-world collaborative studies: a multi-site international study with one-shot lossless GLMM algorithm
在现实世界的协作研究中释放效率:一项具有一次性无损广义线性混合模型算法的多站点国际研究
- DOI:
10.1038/s41746-025-01846-1 - 发表时间:
2025-07-19 - 期刊:
- 影响因子:15.100
- 作者:
Jiayi Tong;Jenna M. Reps;Chongliang Luo;Yiwen Lu;Lu Li;Juan Manuel Ramirez-Anguita;Milou T. Brand;Scott L. DuVall;Thomas Falconer;Alex Mayer Fuentes;Xing He;Michael E. Matheny;Miguel A. Mayer;Bhavnisha K. Patel;Katherine R. Simon;Marc A. Suchard;Guojun Tang;Benjamin Viernes;Ross D. Williams;Mui van Zandt;Fei Wang;Jiang Bian;Jiayu Zhou;David A. Asch;Yong Chen - 通讯作者:
Yong Chen
Authors’ Response to Huang et al.’s Comment on “Serially Combining Epidemiological Designs Does Not Improve Overall Signal Detection in Vaccine Safety Surveillance”
- DOI:
10.1007/s40264-024-01411-x - 发表时间:
2024-03-05 - 期刊:
- 影响因子:3.800
- 作者:
Fan Bu;Faaizah Arshad;George Hripcsak;Patrick B. Ryan;Martijn J. Schuemie;Marc A. Suchard - 通讯作者:
Marc A. Suchard
Transmission dynamics of the 2022 mpox epidemic in New York City
2022 年猴痘疫情在纽约市的传播动态
- DOI:
10.1038/s41591-025-03526-9 - 发表时间:
2025-03-25 - 期刊:
- 影响因子:50.000
- 作者:
Jonathan E. Pekar;Yu Wang;Jade C. Wang;Yucai Shao;Faten Taki;Lisa A. Forgione;Helly Amin;Tyler Clabby;Kimberly Johnson;Lucia V. Torian;Sarah L. Braunstein;Preeti Pathela;Enoma Omoregie;Scott Hughes;Marc A. Suchard;Tetyana I. Vasylyeva;Philippe Lemey;Joel O. Wertheim - 通讯作者:
Joel O. Wertheim
BEAST X for Bayesian phylogenetic, phylogeographic and phylodynamic inference
用于贝叶斯系统发育、系统地理和系统动态推断的 BEAST X
- DOI:
10.1038/s41592-025-02751-x - 发表时间:
2025-07-07 - 期刊:
- 影响因子:32.100
- 作者:
Guy Baele;Xiang Ji;Gabriel W. Hassler;John T. McCrone;Yucai Shao;Zhenyu Zhang;Andrew J. Holbrook;Philippe Lemey;Alexei J. Drummond;Andrew Rambaut;Marc A. Suchard - 通讯作者:
Marc A. Suchard
Artificial intelligence for modelling infectious disease epidemics
用于模拟传染病流行的人工智能
- DOI:
10.1038/s41586-024-08564-w - 发表时间:
2025-02-19 - 期刊:
- 影响因子:48.500
- 作者:
Moritz U. G. Kraemer;Joseph L.-H. Tsui;Serina Y. Chang;Spyros Lytras;Mark P. Khurana;Samantha Vanderslott;Sumali Bajaj;Neil Scheidwasser;Jacob Liam Curran-Sebastian;Elizaveta Semenova;Mengyan Zhang;H. Juliette T. Unwin;Oliver J. Watson;Cathal Mills;Abhishek Dasgupta;Luca Ferretti;Samuel V. Scarpino;Etien Koua;Oliver Morgan;Houriiyah Tegally;Ulrich Paquet;Loukas Moutsianas;Christophe Fraser;Neil M. Ferguson;Eric J. Topol;David A. Duchêne;Tanja Stadler;Patricia Kingori;Michael J. Parker;Francesca Dominici;Nigel Shadbolt;Marc A. Suchard;Oliver Ratmann;Seth Flaxman;Edward C. Holmes;Manuel Gomez-Rodriguez;Bernhard Schölkopf;Christl A. Donnelly;Oliver G. Pybus;Simon Cauchemez;Samir Bhatt - 通讯作者:
Samir Bhatt
Marc A. Suchard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marc A. Suchard', 18)}}的其他基金
Statistical innovation to integrate sequences and phenotypes for scalable phylodynamic inference
统计创新整合序列和表型以进行可扩展的系统动力学推断
- 批准号:
10584588 - 财政年份:2021
- 资助金额:
$ 5.77万 - 项目类别:
Statistical innovation to integrate sequences and phenotypes for scalable phylodynamic inference
统计创新整合序列和表型以进行可扩展的系统动力学推断
- 批准号:
10390334 - 财政年份:2021
- 资助金额:
$ 5.77万 - 项目类别:
Statistical innovation to integrate sequences and phenotypes for scalable phylodynamic inference
统计创新整合序列和表型以进行可扩展的系统动力学推断
- 批准号:
10177121 - 财政年份:2021
- 资助金额:
$ 5.77万 - 项目类别:
Consortium for Viral Systems Biology Modeling Core
病毒系统生物学建模核心联盟
- 批准号:
10579085 - 财政年份:2018
- 资助金额:
$ 5.77万 - 项目类别:
Consortium for Viral Systems Biology Modeling Core
病毒系统生物学建模核心联盟
- 批准号:
10374718 - 财政年份:2018
- 资助金额:
$ 5.77万 - 项目类别:
Bayesian Joint Estimation of Alignment and Phylogeny
比对和系统发育的贝叶斯联合估计
- 批准号:
7596504 - 财政年份:2008
- 资助金额:
$ 5.77万 - 项目类别:
Bayesian Joint Estimation of Alignment and Phylogeny
比对和系统发育的贝叶斯联合估计
- 批准号:
7660485 - 财政年份:2008
- 资助金额:
$ 5.77万 - 项目类别:
Bayesian Joint Estimation of Alignment and Phylogeny
比对和系统发育的贝叶斯联合估计
- 批准号:
8116012 - 财政年份:2008
- 资助金额:
$ 5.77万 - 项目类别:
Bayesian Joint Estimation of Alignment and Phylogeny
比对和系统发育的贝叶斯联合估计
- 批准号:
7883433 - 财政年份:2008
- 资助金额:
$ 5.77万 - 项目类别:
Bayesian Joint Estimation of Alignment and Phylogeny
比对和系统发育的贝叶斯联合估计
- 批准号:
8302280 - 财政年份:2008
- 资助金额:
$ 5.77万 - 项目类别:
相似海外基金
Medcircuit, the algorithmic software reducing waiting times in emergency department and general practice waiting rooms.
MedCircuit,一种算法软件,可减少急诊科和全科候诊室的等待时间。
- 批准号:
133416 - 财政年份:2018
- 资助金额:
$ 5.77万 - 项目类别:
Feasibility Studies
SHF: Small: Programming Abstractions for Algorithmic Software Synthesis
SHF:小型:算法软件综合的编程抽象
- 批准号:
0916351 - 财政年份:2009
- 资助金额:
$ 5.77万 - 项目类别:
Standard Grant














{{item.name}}会员




