Bayesian Joint Estimation of Alignment and Phylogeny

比对和系统发育的贝叶斯联合估计

基本信息

  • 批准号:
    8302280
  • 负责人:
  • 金额:
    $ 29.52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-08-01 至 2015-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Phylogenetic reconstruction is an invaluable tool for studying molecular sequences. Starting from a description of how the characters in the sequences mutate over time, the methods attempt to uncover the sequences' relatedness. Common applications range from describing the evolutionary histories of living organisms in evolutionary biology to estimating genetic distances and constructing protein families in molecular biology and bioinformatics. Standard reconstruction methods rely on sequence alignments that specify which characters in the sequences are homologous, deriving from common ancestors. A fundamental difficulty is that sequence alignments are not directly observed; they are inferred properties of the raw sequence data and must be estimated along with the phylogeny. Current tools handle this inference sequentially, first determining a sometimes poor estimate of the alignment and then conditioning on the truth of alignment to reconstruct the phylogeny. This project provides practical tools for end-users to simultaneously infer alignment and phylogeny, side-stepping biases that sequential estimation introduces. The tools assume both a character substitution model and an insertion/deletion (indel) process through which characters are added or removed generating an alignment. Further, these indels supply previously under-utilized information from the data to infer phytogenies. Major advances make this phylo-alignment framework useful for real-life datasets. The framework draws heavily on hidden Markov models, Bayesian computation and clever parameter integration to produce a computationally efficient inference engine. Expert prior knowledge helps inform the indel process. From this, realistic priors enable Bayes factor tests to address if specific indels are shared by descent or are homoplastic, reducing controversy over their value in phylogenetics. Modeling assumptions better reflect the underlying biology. Allowing spatial variation in the indel process provides more accurate phytogenies and alignments. The extensions also provide for heterogeneity tests to identify evolutionary interesting sequence regions. Examples of the methods span all time-scales of evolution, across billions of years to infer early branches in the Tree of Life to matters of months to describe the diversification of rapidly evolving viruses within infected hosts. This project markedly impacts many fields across biomedical research. For example, the project furnishes mathematical and statistical training in bioinformatics which will play a prime role in discovery during the 21st century, and rigorous inference tools employing phylo-alignment deliver improved molecular, comparative studies, a more accurate understanding of human evolution and new perspectives from which to battle infectious diseases.
描述(申请人提供):系统发育重建是研究分子序列的宝贵工具。从描述序列中的字符如何随时间变化开始,这些方法试图揭示序列的相关性。常见的应用范围从进化生物学中描述生物体的进化史到分子生物学和生物信息学中估计遗传距离和构建蛋白质家族。标准的重建方法依赖于序列比对,它指定序列中的哪些字符是同源的,来自共同的祖先。一个根本的困难是不能直接观察到序列比对;它们是原始序列数据的推断属性,必须与系统发育一起估计。目前的工具按顺序处理这种推断,首先确定有时不准确的对齐估计,然后根据对齐的真实性来重建系统发育。该项目为最终用户提供了实用的工具,可以同时推断序列估计引入的排列和系统发育,回避偏差。这些工具假设字符替换模型和插入/删除(indel)过程,通过该过程添加或删除字符,生成对齐。此外,这些指数从数据中提供了以前未充分利用的信息来推断植物发生。主要的进展使这种物种比对框架对现实生活中的数据集有用。该框架大量利用隐马尔可夫模型、贝叶斯计算和巧妙的参数集成来产生计算效率高的推理引擎。专家的先验知识有助于为indel过程提供信息。由此,现实的先验使贝叶斯因子测试能够解决特定的指数是否由血统共享或同质性,从而减少了对其在系统发育中的价值的争议。建模假设能更好地反映潜在的生物学。允许在indel过程中的空间变化提供了更准确的植物生长和排列。扩展还提供了异质性测试,以确定进化感兴趣的序列区域。这些方法的例子跨越了进化的所有时间尺度,从数十亿年的时间推断出生命之树的早期分支,到几个月的时间来描述受感染宿主内快速进化的病毒的多样化。

项目成果

期刊论文数量(36)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ancient hybridization and an Irish origin for the modern polar bear matriline.
  • DOI:
    10.1016/j.cub.2011.05.058
  • 发表时间:
    2011-08-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Edwards CJ;Suchard MA;Lemey P;Welch JJ;Barnes I;Fulton TL;Barnett R;O'Connell TC;Coxon P;Monaghan N;Valdiosera CE;Lorenzen ED;Willerslev E;Baryshnikov GF;Rambaut A;Thomas MG;Bradley DG;Shapiro B
  • 通讯作者:
    Shapiro B
Massive parallelization of serial inference algorithms for a complex generalized linear model.
πBUSS: a parallel BEAST/BEAGLE utility for sequence simulation under complex evolutionary scenarios.
  • DOI:
    10.1186/1471-2105-15-133
  • 发表时间:
    2014-05-07
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Bielejec F;Lemey P;Carvalho LM;Baele G;Rambaut A;Suchard MA
  • 通讯作者:
    Suchard MA
The deep roots of the rings of life.
  • DOI:
    10.1093/gbe/evt194
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Lake JA;Sinsheimer JS
  • 通讯作者:
    Sinsheimer JS
Fitting Birth-Death Processes to Panel Data with Applications to Bacterial DNA Fingerprinting.
  • DOI:
    10.1214/13-aoas673
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Doss CR;Suchard MA;Holmes I;Kato-Maeda M;Minin VN
  • 通讯作者:
    Minin VN
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marc A. Suchard其他文献

Unlocking efficiency in real-world collaborative studies: a multi-site international study with one-shot lossless GLMM algorithm
在现实世界的协作研究中释放效率:一项具有一次性无损广义线性混合模型算法的多站点国际研究
  • DOI:
    10.1038/s41746-025-01846-1
  • 发表时间:
    2025-07-19
  • 期刊:
  • 影响因子:
    15.100
  • 作者:
    Jiayi Tong;Jenna M. Reps;Chongliang Luo;Yiwen Lu;Lu Li;Juan Manuel Ramirez-Anguita;Milou T. Brand;Scott L. DuVall;Thomas Falconer;Alex Mayer Fuentes;Xing He;Michael E. Matheny;Miguel A. Mayer;Bhavnisha K. Patel;Katherine R. Simon;Marc A. Suchard;Guojun Tang;Benjamin Viernes;Ross D. Williams;Mui van Zandt;Fei Wang;Jiang Bian;Jiayu Zhou;David A. Asch;Yong Chen
  • 通讯作者:
    Yong Chen
Authors’ Response to Huang et al.’s Comment on “Serially Combining Epidemiological Designs Does Not Improve Overall Signal Detection in Vaccine Safety Surveillance”
  • DOI:
    10.1007/s40264-024-01411-x
  • 发表时间:
    2024-03-05
  • 期刊:
  • 影响因子:
    3.800
  • 作者:
    Fan Bu;Faaizah Arshad;George Hripcsak;Patrick B. Ryan;Martijn J. Schuemie;Marc A. Suchard
  • 通讯作者:
    Marc A. Suchard
Transmission dynamics of the 2022 mpox epidemic in New York City
2022 年猴痘疫情在纽约市的传播动态
  • DOI:
    10.1038/s41591-025-03526-9
  • 发表时间:
    2025-03-25
  • 期刊:
  • 影响因子:
    50.000
  • 作者:
    Jonathan E. Pekar;Yu Wang;Jade C. Wang;Yucai Shao;Faten Taki;Lisa A. Forgione;Helly Amin;Tyler Clabby;Kimberly Johnson;Lucia V. Torian;Sarah L. Braunstein;Preeti Pathela;Enoma Omoregie;Scott Hughes;Marc A. Suchard;Tetyana I. Vasylyeva;Philippe Lemey;Joel O. Wertheim
  • 通讯作者:
    Joel O. Wertheim
BEAST X for Bayesian phylogenetic, phylogeographic and phylodynamic inference
用于贝叶斯系统发育、系统地理和系统动态推断的 BEAST X
  • DOI:
    10.1038/s41592-025-02751-x
  • 发表时间:
    2025-07-07
  • 期刊:
  • 影响因子:
    32.100
  • 作者:
    Guy Baele;Xiang Ji;Gabriel W. Hassler;John T. McCrone;Yucai Shao;Zhenyu Zhang;Andrew J. Holbrook;Philippe Lemey;Alexei J. Drummond;Andrew Rambaut;Marc A. Suchard
  • 通讯作者:
    Marc A. Suchard
Finding high posterior density phylogenies by systematically extending a directed acyclic graph
  • DOI:
    10.1186/s13015-025-00273-x
  • 发表时间:
    2025-02-28
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Chris Jennings-Shaffer;David H. Rich;Matthew Macaulay;Michael D. Karcher;Tanvi Ganapathy;Shosuke Kiami;Anna Kooperberg;Cheng Zhang;Marc A. Suchard;Frederick A. Matsen
  • 通讯作者:
    Frederick A. Matsen

Marc A. Suchard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marc A. Suchard', 18)}}的其他基金

Statistical innovation to integrate sequences and phenotypes for scalable phylodynamic inference
统计创新整合序列和表型以进行可扩展的系统动力学推断
  • 批准号:
    10584588
  • 财政年份:
    2021
  • 资助金额:
    $ 29.52万
  • 项目类别:
Statistical innovation to integrate sequences and phenotypes for scalable phylodynamic inference
统计创新整合序列和表型以进行可扩展的系统动力学推断
  • 批准号:
    10390334
  • 财政年份:
    2021
  • 资助金额:
    $ 29.52万
  • 项目类别:
Statistical innovation to integrate sequences and phenotypes for scalable phylodynamic inference
统计创新整合序列和表型以进行可扩展的系统动力学推断
  • 批准号:
    10177121
  • 财政年份:
    2021
  • 资助金额:
    $ 29.52万
  • 项目类别:
Consortium for Viral Systems Biology Modeling Core
病毒系统生物学建模核心联盟
  • 批准号:
    10579085
  • 财政年份:
    2018
  • 资助金额:
    $ 29.52万
  • 项目类别:
Consortium for Viral Systems Biology Modeling Core
病毒系统生物学建模核心联盟
  • 批准号:
    10374718
  • 财政年份:
    2018
  • 资助金额:
    $ 29.52万
  • 项目类别:
Consortium for Viral Systems Biology Modeling Core
病毒系统生物学建模核心联盟
  • 批准号:
    10310604
  • 财政年份:
    2018
  • 资助金额:
    $ 29.52万
  • 项目类别:
Bayesian Joint Estimation of Alignment and Phylogeny
比对和系统发育的贝叶斯联合估计
  • 批准号:
    7596504
  • 财政年份:
    2008
  • 资助金额:
    $ 29.52万
  • 项目类别:
Bayesian Joint Estimation of Alignment and Phylogeny
比对和系统发育的贝叶斯联合估计
  • 批准号:
    7660485
  • 财政年份:
    2008
  • 资助金额:
    $ 29.52万
  • 项目类别:
Bayesian Joint Estimation of Alignment and Phylogeny
比对和系统发育的贝叶斯联合估计
  • 批准号:
    8116012
  • 财政年份:
    2008
  • 资助金额:
    $ 29.52万
  • 项目类别:
Bayesian Joint Estimation of Alignment and Phylogeny
比对和系统发育的贝叶斯联合估计
  • 批准号:
    7883433
  • 财政年份:
    2008
  • 资助金额:
    $ 29.52万
  • 项目类别:

相似海外基金

Novel Data Structures And Scalable Algorithms For High Throughput Bioinformatics
高通量生物信息学的新颖数据结构和可扩展算法
  • 批准号:
    RGPIN-2019-06640
  • 财政年份:
    2022
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Discovery Grants Program - Individual
Bioinformatics Algorithms for Protein Interactions and Applications
蛋白质相互作用和应用的生物信息学算法
  • 批准号:
    RGPIN-2021-03978
  • 财政年份:
    2022
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Data Structures And Scalable Algorithms For High Throughput Bioinformatics
高通量生物信息学的新颖数据结构和可扩展算法
  • 批准号:
    RGPIN-2019-06640
  • 财政年份:
    2021
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Discovery Grants Program - Individual
Bioinformatics Algorithms for Protein Interactions and Applications
蛋白质相互作用和应用的生物信息学算法
  • 批准号:
    RGPIN-2021-03978
  • 财政年份:
    2021
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Discovery Grants Program - Individual
Bioinformatics Algorithms
生物信息学算法
  • 批准号:
    CRC-2017-00215
  • 财政年份:
    2021
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Canada Research Chairs
Bioinformatics Algorithms and Software for Proteomics
蛋白质组学生物信息学算法和软件
  • 批准号:
    RGPIN-2016-03998
  • 财政年份:
    2021
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Data Structures And Scalable Algorithms For High Throughput Bioinformatics
高通量生物信息学的新颖数据结构和可扩展算法
  • 批准号:
    RGPIN-2019-06640
  • 财政年份:
    2020
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Discovery Grants Program - Individual
Bioinformatics algorithms
生物信息学算法
  • 批准号:
    CRC-2017-00215
  • 财政年份:
    2020
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Canada Research Chairs
Bioinformatics algorithms
生物信息学算法
  • 批准号:
    CRC-2017-00215
  • 财政年份:
    2019
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Canada Research Chairs
Bioinformatics Algorithms and Software for Proteomics
蛋白质组学生物信息学算法和软件
  • 批准号:
    RGPIN-2016-03998
  • 财政年份:
    2019
  • 资助金额:
    $ 29.52万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了