Phosphoinositide Signaling in the Cytosol and Nucleus
细胞质和细胞核中的磷酸肌醇信号转导
基本信息
- 批准号:10323007
- 负责人:
- 金额:$ 70.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AgonistBindingBiological ProcessCardiovascular systemCell NucleusCell ProliferationCell SurvivalCell membraneCell physiologyCytosolDNA RepairDiabetes MellitusDiagnosticDiseaseEGF geneEndosomesEpidermal Growth Factor ReceptorEventGene ExpressionGenerationsGenesImmune systemLinkMAP4Malignant NeoplasmsMembraneMicrotubulesNeurodevelopmental DisorderNeuronsNuclearOutcomePDPK1 genePTEN genePathway interactionsPhosphatidylinositol 4,5-DiphosphatePhosphatidylinositolsPhosphotransferasesPolynucleotide AdenylyltransferaseProcessRegulationResearchResistanceRoleSecond Messenger SystemsSignal PathwaySignal TransductionStressTP53 geneTherapeuticTumor Suppressor Proteinsbiological adaptation to stresscancer cellinositol polyphosphate multikinasenovelreceptorscaffold
项目摘要
PROJECT SUMMARY. This research seeks to understand spatial phosphoinositide signaling (PI) mechanisms
in the cytosol and nucleus. These pathways have broad implications for cancer, neurodevelopmental disorders,
diabetes, and several congenital diseases. In the cytosol, agonists, such as EGF (and many others), activate
signaling pathways that control most cellular functions. In the nucleus, these pathways are separate from known
membrane compartments but control stress responses that impact DNA repair, cell survival, and other events.
Agonists activated PI3K signaling occurs through the IQGAP1 scaffold that assembles multiple pathways
including the PI 3-kinase and Erk pathways. Yet, how the IQGAPs assemble specific signaling pathways is not
understood. We will focus on the assembly of the full PI 3-kinase pathway on IQGAPs. This includes the
assembly of the PI 4-kinase (PI4KIII), type I PIP 5-kinase (PIPKI), PI3K, Ras, PDK1 and Akt into the
scaffold. Remarkably, we show that IQGAP2 and IQGAP3 also assemble the PI 3-kinase pathway components
but with different outcomes. IQGAP2 is tumor suppressor in cancer cells whereas IQGAP1 and IQGAP3 promote
PI3K signaling and cell proliferation. Here, we will explore how receptors stimulate the assembly of the IQGAPs
signaling pathways with an emphasis on the EGF receptor and IQGAP1-PI 3-kinase and Erk pathways. We will
emphasize spatial PI 3-kinase signaling at endosomal compartments at proximity to microtubules by linkage with
microtubule associated protein 4 (MAP4) that interacts with IQGAP1 and PI 3-kinase. The link between the
cytosolic and nuclear PI signaling is the PIPKI, which generates PIP2 in the cytosol and nucleus
Nuclear PI signaling remarkably is not associated with membrane compartments. We showed that a nuclear
poly(A) polymerase, Star-PAP (for speckle targeted PIPKI regulated-poly(A) polymerase), associates with
PIPKI and is activated by phosphatidylinositol-4,5-bisphosphate (PIP2). Star-PAP controls ~40% of genes and
is regulated by many signals. Recently, we have shown that PIPKI also binds to the tumor suppressor p53,
and that p53 is a PIP2 effector. The binding of PIP2 stimulates p53’s interactions with other nuclear factors that
control p53 function. Both Star-PAP and p53 are also regulated by inositol polyphosphate multikinase (IPMK)
that generates phosphatidylinositol-3,4,5-trisphosphate (PIP3) associated with p53, and nuclear PTEN that
dephosphorylates this PIP3. We have identified Star-PAP and p53 as two key effectors of nuclear
phosphoinositide signaling during stress signaling. This proposal will focus on the mechanism and impact of this
stress pathway on Star-PAP functions. Remarkably the PIPn is so tightly associated with Star-PAP and p53 that
it is stable to SDS-PAGE suggesting a covalent linkage and we will explore how PIP2 is linked to Star-PAP and
p53. Is this covalent or a very tight interaction that is resistant to denaturation? Our findings indicate new avenues
for potential therapeutic control of both the cytosolic and nuclear PI pathways as these pathways have
fundamental implications in many disease processes but with an emphasis on cancer.
项目摘要。本研究旨在了解空间磷酸肌醇信号(PI)机制
在细胞质和细胞核中。这些通路对癌症、神经发育障碍、
糖尿病和几种先天性疾病。在细胞质中,激动剂,如EGF(和许多其他),激活
控制大多数细胞功能的信号通路。在细胞核中,这些通路与已知的
膜隔室,但控制影响DNA修复,细胞存活和其他事件的应激反应。
激动剂激活PI 3 K信号传导通过IQGAP 1支架发生,该支架组装多个通路
包括PI 3-激酶和Erk途径。然而,IQGAP如何组装特定的信号通路并不清楚。
明白我们将专注于完整PI 3-激酶途径在IQGAP上的组装。这包括
将PI 4-激酶(PI 4KIII β)、I型PI 3 K PIP 5-激酶(PIPKI β)、PI 3 K、Ras、PDK 1和Akt组装成
脚手架值得注意的是,我们发现IQGAP 2和IQGAP 3也组装PI 3-激酶通路组件
但结果不同IQGAP 2是癌细胞中的肿瘤抑制因子,而IQGAP 1和IQGAP 3促进癌细胞的增殖。
PI 3 K信号传导和细胞增殖。在这里,我们将探讨受体如何刺激IQGAP的组装
信号通路,重点是EGF受体和IQGAP 1-PI 3-激酶和Erk通路。我们将
强调空间PI 3-激酶信号传导在内体区室在接近微管的联系,
微管相关蛋白4(MAP 4)与IQGAP 1和PI 3-激酶相互作用。之间的联系
胞质和核PI信号传导是PIPKI信号传导,其在胞质和核中产生PIP 2
核PI信号显着不与膜隔室。我们发现一个核武器
多聚腺苷酸聚合酶,Star-PAP(斑点靶向PIPKI调节的多聚腺苷酸聚合酶),与
PIPKI是磷脂酰肌醇-4,5-二磷酸(PIP 2)的底物,被激活。Star-PAP控制约40%的基因,
它受到许多信号的调节。最近,我们已经证明PIPKI β也与肿瘤抑制因子p53结合,
p53是PIP 2效应子PIP 2的结合刺激p53与其他核因子的相互作用,
控制p53功能。Star-PAP和p53也受肌醇多磷酸多激酶(IPMK)调节。
产生与p53相关的磷脂酰肌醇-3,4,5-三磷酸(PIP 3),以及
使PIP 3去磷酸化。我们已经确定Star-PAP和p53是两个关键的核转录因子。
在应激信号传导期间的磷酸肌醇信号传导。本提案将重点讨论这一机制和影响,
应激途径对Star-PAP功能的影响。值得注意的是,PIPn与Star-PAP和p53紧密相关,
它对SDS-PAGE是稳定的,表明共价连接,我们将探索PIP 2如何连接到Star-PAP,
第53页。这种相互作用是共价的还是非常紧密的,能够抵抗变性?我们的发现指出了
对于胞质和核PI途径的潜在治疗控制,因为这些途径具有
在许多疾病过程中的基本影响,但重点是癌症。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard A. Anderson其他文献
Evidence for tissue selectivity of the synthetic androgen 7 alpha-methyl-19-nortestosterone in hypogonadal men.
性腺功能减退男性中合成雄激素 7 α-甲基-19-去甲睾酮的组织选择性的证据。
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:5.8
- 作者:
Richard A. Anderson;A. Michael Wallace;N. Sattar;Narendar Kumar;K. Sundaram - 通讯作者:
K. Sundaram
Interactions between protein 4.1 and band 3. An alternative binding site for an element of the membrane skeleton.
蛋白质 4.1 和带 3 之间的相互作用。膜骨架元件的替代结合位点。
- DOI:
- 发表时间:
1985 - 期刊:
- 影响因子:4.8
- 作者:
Gary R. PasternackS;Richard A. Anderson;Thomas L. Leto;Vincent T. Marchesi - 通讯作者:
Vincent T. Marchesi
Measuring ovarian toxicity in clinical trials: an American Society of Clinical Oncology research statement.
在临床试验中测量卵巢毒性:美国临床肿瘤学会研究声明。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
W. Cui;R. Rocconi;Ramya Thota;Richard A. Anderson;S. Bruinooge;Ioanna A Comstock;N. Denduluri;Audrey Gassman;Julie R Gralow;Karla J. Hutt;L. Amiri;M. Lambertini;John K Leighton;Karen H Lu;S. Mostoufi;Teri Pollastro;Shan Pradhan;H. Saber;Caroline Schenkel;D. Spratt;S. Wedam;K. Phillips - 通讯作者:
K. Phillips
FROM THIENOPYRIDINES TO NITROSOTHIOLS: A NOVEL POTENTIAL MECHANISM OF THIENOPYRIDINES BIOACTIVITY
- DOI:
10.1016/s0735-1097(11)61918-9 - 发表时间:
2011-04-05 - 期刊:
- 影响因子:
- 作者:
Richard A. Anderson;Shantu Bundhoo;Ewelina Sagan;Jessica Dada;Rebecca Harris;Phillip James - 通讯作者:
Phillip James
Explorer Identification of the niche and phenotype of the first human hematopoietic stem cells
Explorer 鉴定第一个人类造血干细胞的生态位和表型
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
A. Ivanovs;S. Rybtsov;Richard A. Anderson;Marc L. Turner;A. Medvinsky - 通讯作者:
A. Medvinsky
Richard A. Anderson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard A. Anderson', 18)}}的其他基金
Tau-PI3Kalpha Complex in Regulation of PI3K/Akt-dependent Neuronal Function and Survival
Tau-PI3Kalpha 复合物调节 PI3K/Akt 依赖性神经元功能和存活
- 批准号:
10710161 - 财政年份:2022
- 资助金额:
$ 70.71万 - 项目类别:
Phosphoinositide Signaling in the Cytosol and Nucleus
细胞质和细胞核中的磷酸肌醇信号转导
- 批准号:
10386086 - 财政年份:2020
- 资助金额:
$ 70.71万 - 项目类别:
Phosphoinositide Signaling in the Cytosol and Nucleus
细胞质和细胞核中的磷酸肌醇信号转导
- 批准号:
10077869 - 财政年份:2020
- 资助金额:
$ 70.71万 - 项目类别:
Administrative Supplement: Phosphoinositide Signaling in the Cytosol and Nucleus
行政补充:细胞质和细胞核中的磷酸肌醇信号传导
- 批准号:
10799130 - 财政年份:2020
- 资助金额:
$ 70.71万 - 项目类别:
Phosphoinositide Signaling in the Cytosol and Nucleus
细胞质和细胞核中的磷酸肌醇信号转导
- 批准号:
10561701 - 财政年份:2020
- 资助金额:
$ 70.71万 - 项目类别:
Nuclear Phosphoinositide Control of 3'-end mRNA Processing and Gene Expression
核磷酸肌醇控制 3 端 mRNA 加工和基因表达
- 批准号:
9027153 - 财政年份:2015
- 资助金额:
$ 70.71万 - 项目类别:
Nuclear Phosphoinositide Control of 3'-end mRNA Processing and Gene Expression
核磷酸肌醇控制 3 端 mRNA 加工和基因表达
- 批准号:
9199104 - 财政年份:2015
- 资助金额:
$ 70.71万 - 项目类别:
Phosphoinositide Signaling To and Within the Nucleus
进入细胞核和细胞核内的磷酸肌醇信号传导
- 批准号:
8059297 - 财政年份:2010
- 资助金额:
$ 70.71万 - 项目类别:
Graduate Training in Molecular and Cellular Pharmacology
分子和细胞药理学研究生培训
- 批准号:
7892114 - 财政年份:2009
- 资助金额:
$ 70.71万 - 项目类别:
Phosphatidylinositol (PI) Signaling Role in Ephitelial / Mesenchymal Transition
磷脂酰肌醇 (PI) 在上皮/间质转化中的信号作用
- 批准号:
7393089 - 财政年份:2004
- 资助金额:
$ 70.71万 - 项目类别:
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:32170319
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
番茄EIN3-binding F-box蛋白2超表达诱导单性结实和果实成熟异常的机制研究
- 批准号:31372080
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
P53 binding protein 1 调控乳腺癌进展转移及化疗敏感性的机制研究
- 批准号:81172529
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
DBP(Vitamin D Binding Protein)在多发性硬化中的作用和相关机制的蛋白质组学研究
- 批准号:81070952
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
研究EB1(End-Binding protein 1)的癌基因特性及作用机制
- 批准号:30672361
- 批准年份:2006
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321481 - 财政年份:2024
- 资助金额:
$ 70.71万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321480 - 财政年份:2024
- 资助金额:
$ 70.71万 - 项目类别:
Continuing Grant
Postdoctoral Fellowship: OPP-PRF: Understanding the Role of Specific Iron-binding Organic Ligands in Governing Iron Biogeochemistry in the Southern Ocean
博士后奖学金:OPP-PRF:了解特定铁结合有机配体在控制南大洋铁生物地球化学中的作用
- 批准号:
2317664 - 财政年份:2024
- 资助金额:
$ 70.71万 - 项目类别:
Standard Grant
Conformations of musk odorants and their binding to human musk receptors
麝香气味剂的构象及其与人类麝香受体的结合
- 批准号:
EP/X039420/1 - 财政年份:2024
- 资助金额:
$ 70.71万 - 项目类别:
Research Grant
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
- 批准号:
EP/Y029542/1 - 财政年份:2024
- 资助金额:
$ 70.71万 - 项目类别:
Fellowship
Alkane transformations through binding to metals
通过与金属结合进行烷烃转化
- 批准号:
DP240103289 - 财政年份:2024
- 资助金额:
$ 70.71万 - 项目类别:
Discovery Projects
I-Corps: Translation Potential of Real-time, Ultrasensitive Electrical Transduction of Biological Binding Events for Pathogen and Disease Detection
I-Corps:生物结合事件的实时、超灵敏电转导在病原体和疾病检测中的转化潜力
- 批准号:
2419915 - 财政年份:2024
- 资助金额:
$ 70.71万 - 项目类别:
Standard Grant
The roles of a universally conserved DNA-and RNA-binding domain in controlling MRSA virulence and antibiotic resistance
普遍保守的 DNA 和 RNA 结合域在控制 MRSA 毒力和抗生素耐药性中的作用
- 批准号:
MR/Y013131/1 - 财政年份:2024
- 资助金额:
$ 70.71万 - 项目类别:
Research Grant
CRII: OAC: Development of a modular framework for the modeling of peptide and protein binding to membranes
CRII:OAC:开发用于模拟肽和蛋白质与膜结合的模块化框架
- 批准号:
2347997 - 财政年份:2024
- 资助金额:
$ 70.71万 - 项目类别:
Standard Grant
How lipid binding proteins shape the activity of nuclear hormone receptors
脂质结合蛋白如何影响核激素受体的活性
- 批准号:
DP240103141 - 财政年份:2024
- 资助金额:
$ 70.71万 - 项目类别:
Discovery Projects