Revealing Health Trajectories of Chronic Kidney Disease for Precision Medicine
揭示精准医学慢性肾脏病的健康轨迹
基本信息
- 批准号:10445907
- 负责人:
- 金额:$ 32.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:Acute Renal Failure with Renal Papillary NecrosisAddressAdultAffectArtificial IntelligenceBig DataCharacteristicsChronic DiseaseChronic Kidney FailureClinicClinic VisitsClinicalClinical InformaticsClinical SciencesClonidineCollectionComplexComputerized Medical RecordDataData CollectionDatabasesDecision MakingDevelopmentDiagnosisDietDiseaseDisease ManagementDisease ProgressionDrug CombinationsDrug InteractionsDrug usageEarly identificationEconomic BurdenElectronic Health RecordFluconazoleGeneral PopulationGeneticGlomerular Filtration RateGoalsGraphHealthHealth InsuranceHealth systemIncidenceIndianaIndividualInstitutesKidneyKnowledgeLearningLife ExpectancyMathematicsMedicalModelingMyopathyOmeprazolePathogenicityPatient CarePatientsPatternPharmaceutical PreparationsPopulationQuality ControlQuality of lifeResearchRiskRisk FactorsSocietiesSourceTranslational ResearchTreatment outcomeUniversitiesWorkbaseclinical careclinical decision supportclinical encountercohortcomorbiditycomplex datadata harmonizationdata modelingeconomic determinantexperiencefollow-upheterogenous dataindexinginsurance claimslifestyle factorsmedical schoolsmedical specialtiesmodifiable risknephrotoxicitynovelnovel strategiesnovel therapeuticspatient subsetspersonalized decisionphenomeprecision medicinepreventreconstructionsocioeconomicssuccesstraitunderserved community
项目摘要
Project summary
Chronic kidney disease (CKD) is common, affecting 14.8% of US adults, and disproportionately more in diverse
and underserved communities. CKD significantly reduces life expectancy and quality of life, while imposing
tremendous economic burden on society. A critical need persists for early identification of modifiable risk factors
in susceptible populations and to establish actionable support for medical decision making. Among the modifiable
risk factors, drug induced acute kidney injury (AKI) contributes to CKD development and progression. The current
knowledge of nephrotoxic drug-drug interactions (DDIs) is insufficient to prevent harm in heterogenous patient
subpopulations. Electronic health records (EHRs) from electronic medical records (EMR) and health insurance
claims data can help predict disparate CKD progression trajectories and uncover novel nephrotoxic drug
interactions. The Indiana University School of Medicine (IUSM) EHR collection includes rich clinical information
for 38 million individuals from regional and national populations over two-to-three decades. The IUSM EHR
collection is composed of Optum EHR derived from the Optum Clinformatics™ claim data and the Indiana EHR
incorporated from the EMR data of Indiana Network for Patient Care (INPC) Research Database, Indiana
University Health (IUH), and Eskenazi Health (EH). We propose to develop the DisEase PrOgression Trajectory
(DEPOT), an evidence-driven, graph-based clinical informatics approach to model CKD progression trajectories
and individualize clinical decision support. We hypothesize that there are different CKD progression paths which
are: 1) driven by different pathogenic mechanisms, 2) susceptible to different nephrotoxic drugs, and 3) identified
by unique EHR data patterns. Mathematically, such CKD trajectory landscapes can be learned as principle
graphs representing the topological and temporal characteristics of the observed, fragmented EHR data. The
goal of this work is to use the IUSM EHR data collection to 1) establish EHR-based CKD progression trajectories
and 2) to learn actionable knowledge to prevent drug-induced AKI and CKD. The multi-specialty team proposes
to: Aim 1. Construct CKD progression trajectories using graph artificial intelligence model and the IUSM EHR
data and Aim 2) Identify nephrotoxic DDIs in the general population and trajectory-specific
subpopulations that increase risks of AKI and CKD. The success of the proposed work will generate novel
knowledge about the landscape of CKD health trajectories and nephrotoxic DDIs, bridging gaps between rich
longitudinal EHR data and decision support for precision medicine in CKD. This work will shift paradigms of big
data and complex disease research, enabling EHR data to become part of daily CKD management.
项目总结
慢性肾脏疾病(CKD)很常见,14.8%的美国成年人受到影响,而且不成比例地在不同的人群中
和服务不足的社区。慢性肾脏病显著降低了预期寿命和生活质量,同时
给社会带来巨大的经济负担。仍然迫切需要及早确定可修改的风险因素
在易感人群中开展这项工作,并为医疗决策提供可行的支持。在可修改的
危险因素、药物性急性肾损伤(AKI)是CKD发生发展的重要因素。海流
对肾毒性药物-药物相互作用(DDIS)的了解不足以预防异种患者的危害
亚群。来自电子病历(EMR)和医疗保险的电子健康记录(EHR)
索赔数据可以帮助预测不同的CKD进展轨迹,并发现新的肾毒性药物
互动。印第安纳大学医学院(IUSM)的EHR集合包括丰富的临床信息
对于来自区域和国家人口的3800万人来说,在20到30年间。IUSM EHR
集合由源自Optom Clinformatics™索赔数据的Optom EHR和印第安纳州EHR组成
合并自印第安纳州患者护理网络(INPC)研究数据库的EMR数据
大学健康(IUH)和Eskenazi健康(EH)。我们建议发展疾病的发展轨迹
(Depot),一种循证驱动、基于图形的临床信息学方法来模拟CKD进展轨迹
和个性化的临床决策支持。我们假设存在不同的CKD进展路径
它们是:1)由不同的致病机制驱动,2)对不同的肾毒性药物易感,3)确定
通过独特的电子病历数据模式。从数学上讲,这种CKD弹道景观可以作为原理来学习
表示观察到的零散电子病历数据的拓扑和时间特征的图表。这个
这项工作的目标是使用IUSM EHR数据收集来1)建立基于EHR的CKD进展轨迹
2)学习预防药物性AKI和CKD的可操作性知识。多专业团队提出
TO:目标1.利用图形人工智能模型和IUSM EHR构建CKD进展轨迹
数据和目的2)在普通人群中确定肾毒性DDIS,并确定轨迹特异性
增加AKI和CKD风险的亚群。拟议工作的成功将产生新的
了解CKD健康轨迹和肾毒性DDiS的情况,弥合RICH之间的差距
纵向EHR数据与CKD精准医疗决策支持。这项工作将改变BIG的范式
数据和复杂疾病研究,使EHR数据成为CKD日常管理的一部分。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jing Su其他文献
Jing Su的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jing Su', 18)}}的其他基金
Revealing Health Trajectories of Chronic Kidney Disease for Precision Medicine
揭示精准医学慢性肾脏病的健康轨迹
- 批准号:
10672425 - 财政年份:2022
- 资助金额:
$ 32.94万 - 项目类别:
Revealing Health Trajectories of Chronic Kidney Disease for Precision Medicine
揭示精准医学慢性肾脏病的健康轨迹
- 批准号:
10714792 - 财政年份:2022
- 资助金额:
$ 32.94万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 32.94万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 32.94万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 32.94万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 32.94万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 32.94万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 32.94万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 32.94万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 32.94万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 32.94万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 32.94万 - 项目类别:
Research Grant














{{item.name}}会员




