Metabolic regulation of human DNA methylation clocks
人类 DNA 甲基化时钟的代谢调控
基本信息
- 批准号:10341144
- 负责人:
- 金额:$ 65.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-15 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAcuteAddressAgeAgingAlgorithmsAnimal ModelBehaviorBiologicalBiological AgingBiological MarkersBiologyBiometryBloodCDKN2A geneCell AgingCell divisionCell modelCellsChronicChronologyCoupledCultured CellsDNADNA MethylationDNA Sequence AlterationDNA analysisDataData AnalysesDefectDiseaseElderlyElectron TransportEpigenetic ProcessEtiologyExhibitsFemaleFibroblastsFoundationsGene ExpressionGenesGeneticGenomeGenomicsGeroscienceGlucocorticoidsGoalsGrantHumanHuman bodyIL6 geneIn VitroIndividualIndividual DifferencesInflammationInflammatoryInterleukin-6InterventionLengthLifeLife StressLinkLocationLongevityLongitudinal StudiesMapsMeasuresMediator of activation proteinMeta-AnalysisMetabolicMetabolic dysfunctionMethodsMitochondriaMitochondrial DNAModelingModificationMolecular ProfilingMonitorMutationNatureOxygenPatientsPatternPersonsPharmacologyPhysiologicalProcessPsychosocial StressPublicationsRegulationReproducibilityResearchResolutionResourcesRoleSex DifferencesSignal TransductionSkinStressSystemTestingTicksTimeTwin Multiple BirthUnited States National Institutes of HealthWomanWorkage relatedagedbasebiobankcausal modelcohortcytokinedata modelingdemethylationexperimental studygenetic approachgenomic locushigh dimensionalityhuman DNAhuman tissuein vivoinsightmalemenmitochondrial dysfunctionmitochondrial genomemodifiable behaviormortalitynovelpersonalized predictionspre-clinicalprediction algorithmrespiratoryresponsestressortelomeretemporal measurement
项目摘要
There are substantial inter-individual differences in biological aging trajectories, but the origin of these
differences is unclear. One specific cellular component that sustains life and fuels stress adaptation are
mitochondria, which contain their own genome and generate metabolic intermediates necessary for epigenetic
modifications. As a result, genetic defects in mitochondria shorten lifespan in both animal models and patients
with mtDNA defects, possibly via the influence of mitochondrial signaling on gene expression and the
epigenetic machinery, which includes DNA methylation (DNAm). Reliable changes in DNAm occur with
advancing age at specific genomic locations, which have been captured and integrated in predictive algorithms
called epigenetic clocks. These clocks predict DNAmAge and have been validated and meta-analyzed in large
human cohorts demonstrating that DNAmAge predicts mortality and age-related diseases. But little is known
about what clocks actually measure (i.e., what makes them tick), and about their modifiability by metabolic
factors across the lifespan. To map the life-long behavior of epigenetic clocks and their responses to both
stress mediators and mitochondrial dysfunction, we have developed a primary human fibroblasts cellular
lifespan model where: i) DNAm signatures of aging are conserved, ii) the rate of DNAm aging is accelerated
about 70 times relative to the human body, iii) metabolic and mitochondrial dysfunction reduces lifespan (i.e.,
the Hayflick limit) by 25-50%, and iv) other aging biomarkers including ccf-mtDNA and the pro-inflammatory
cytokine IL6 are also progressively induced across the cellular lifespan. In Aim 1, we will characterize DNAm
aging trajectories across the entire cellular lifespan in both female and male cells using four different global
DNAmAge algorithms, a gene-based approach, and by modeling single-CpG trajectories. There results will be
validated and extended into available human aging cohorts. In Aim 2, we will examine the modifiability of
DNAm clocks with two interventions that reliably decrease the Hayflick limit: i) we will use converging
pharmacological and genetic approaches to induce specific mitochondrial respiratory defects, and ii) expose
cells to chronic glucocorticoid stimulation to recapitulate the effects of chronic psychosocial stress known to
accelerate biological aging in humans. In the final aim, we will perform studies to understand how clock-based
DNAmAge relate to other validated aging biomarkers including the expression of age-related genes (Elovl2,
p16INK4a), telomere length, circulating cell-free mtDNA (ccf-mtDNA), and the inflammatory cytokine IL-6.
Moreover, additional experiments will be performed to establish the contribution of cell division to epigenetic
age acceleration, the role of ambient oxygen, and to test the effect of a DNA demethylation agent on other
aging biomarkers and on lifespan. Overall, these studies will uncover novel longitudinal associations between
epigenetic clocks and human aging biomarkers, and establish the role of mitochondrial signaling as a driver of
cellular aging in a human system.
在生物衰老轨迹中存在着大量的个体间差异,但这些差异的起源
差异不清楚。维持生命和刺激压力适应的一种特定细胞成分是
线粒体,其中包含自己的基因组,并产生代谢中间体所必需的表观遗传
修改.因此,线粒体的遗传缺陷缩短了动物模型和患者的寿命
线粒体DNA缺陷,可能是通过线粒体信号对基因表达的影响,
表观遗传机制,包括DNA甲基化(DNAm)。DNA m的可靠变化发生在
在特定的基因组位置上的年龄增长,这些位置已经被捕获并整合到预测算法中
称为表观遗传时钟。这些时钟预测DNA年龄,并已得到大规模验证和荟萃分析
人类队列表明DNAmAge预测死亡率和年龄相关疾病。但鲜为人知的
关于时钟实际测量的内容(即,是什么使它们滴答作响),以及它们通过代谢的可修改性
影响整个生命周期的因素。为了绘制表观遗传时钟的终身行为以及它们对两者的反应,
应激介质和线粒体功能障碍,我们已经开发了一种原代人成纤维细胞
寿命模型,其中:i)老化的DNAm签名被保存,ii)DNAm老化的速率被加速
相对于人体约70倍,iii)代谢和线粒体功能障碍缩短寿命(即,
海弗利克极限)降低25- 50%,和iv)其它老化生物标志物,包括ccf-mtDNA和促炎性细胞因子。
细胞因子IL 6也在整个细胞寿命中被逐渐诱导。在目标1中,我们将表征DNAm
使用四种不同的全球性方法,在女性和男性细胞的整个细胞寿命中,
DNAmAge算法,一种基于基因的方法,并通过建模单CpG轨迹。结果会是
验证并扩展到可用的人类老化队列中。在目标2中,我们将检查
DNA时钟与两个干预,可靠地降低海弗利克限制:i)我们将使用收敛
诱导特异性线粒体呼吸缺陷的药理学和遗传学方法,和ii)暴露
细胞对慢性糖皮质激素刺激的反应,以概括已知的慢性心理社会应激的影响,
加速人类的生物衰老。在最后的目标,我们将进行研究,以了解如何时钟为基础的
DNAmAge涉及其他经验证的衰老生物标志物,包括年龄相关基因的表达(Elovl 2,
p16 INK 4a)、端粒长度、循环无细胞mtDNA(ccf-mtDNA)和炎性细胞因子IL-6。
此外,将进行额外的实验以确定细胞分裂对表观遗传的贡献。
年龄加速,环境氧气的作用,并测试DNA去甲基化剂对其他
老化生物标志物和寿命。总的来说,这些研究将揭示新的纵向关联,
表观遗传时钟和人类衰老生物标志物,并建立线粒体信号转导作为驱动因素的作用,
人体系统中的细胞衰老
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martin Picard其他文献
Martin Picard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martin Picard', 18)}}的其他基金
Psychobiological Regulation of Cell-Free Mitochondrial DNA in Human Saliva
人类唾液中游离线粒体 DNA 的心理生物学调节
- 批准号:
10218618 - 财政年份:2021
- 资助金额:
$ 65.03万 - 项目类别:
Psychobiological Regulation of Cell-Free Mitochondrial DNA in Human Saliva
人类唾液中游离线粒体 DNA 的心理生物学调节
- 批准号:
10455009 - 财政年份:2021
- 资助金额:
$ 65.03万 - 项目类别:
Metabolic regulation of human DNA methylation clocks
人类 DNA 甲基化时钟的代谢调控
- 批准号:
10543439 - 财政年份:2020
- 资助金额:
$ 65.03万 - 项目类别:
Mitochondrial regulation of stress reactivity in humans
人类应激反应的线粒体调节
- 批准号:
10392915 - 财政年份:2020
- 资助金额:
$ 65.03万 - 项目类别:
Mitochondrial regulation of stress reactivity in humans
人类应激反应的线粒体调节
- 批准号:
10606548 - 财政年份:2020
- 资助金额:
$ 65.03万 - 项目类别:
Mitochondrial Stress Signal Transduction from Organelle to Organism
从细胞器到生物体的线粒体应激信号转导
- 批准号:
9339716 - 财政年份:2016
- 资助金额:
$ 65.03万 - 项目类别:
Mitochondrial Stress Signal Transduction from Organelle to Organism
从细胞器到生物体的线粒体应激信号转导
- 批准号:
9925788 - 财政年份:2016
- 资助金额:
$ 65.03万 - 项目类别:
Mitochondrial Stress Signal Transduction from Organelle to Organism
从细胞器到生物体的线粒体应激信号转导
- 批准号:
9488035 - 财政年份:2016
- 资助金额:
$ 65.03万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 65.03万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 65.03万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 65.03万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 65.03万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 65.03万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 65.03万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 65.03万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 65.03万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 65.03万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 65.03万 - 项目类别:
Operating Grants