Semi-supervised Approaches to Denoising Electronic Health Records Data for Risk Prediction
用于风险预测的电子健康记录数据去噪半监督方法
基本信息
- 批准号:10453558
- 负责人:
- 金额:$ 33.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptionAftercareAlgorithmsBiologicalClinicalClinical DataClinical InvestigatorClinical TrialsCodeCohort StudiesColon CarcinomaColorectal CancerComplexComputer softwareComputerized Medical RecordDataData SetDevelopmentDimensionsDiseaseDisease OutcomeDisease ProgressionElectronic Health RecordFaceFactor XGenesGoalsGoldHealthcareHealthcare SystemsHeterogeneityHumanInflammatoryInflammatory Bowel DiseasesLabelLearningMalignant NeoplasmsMassachusettsMeasurementMedical GeneticsMedical RecordsMeta-AnalysisMethodologyMethodsModelingOncologyOutcomePatientsPopulationProceduresRegistriesResearchResearch ActivityResearch ProposalsRiskRisk EstimateRisk FactorsSiteSourceSpecimenStatistical AlgorithmStatistical MethodsSupervisionSystemTNF geneTarget PopulationsTestingTrainingTranslational ResearchValidationadalimumabantagonistbasebiobankburden of illnessclinical applicationclinical practicecohortcolon cancer riskcostcost effectivedeep learningdenoisingdisorder riskelectronic datagenomic datahigh dimensionalityimprovedindividualized medicineinfliximablarge datasetslearning strategymachine learning methodmachine learning modelmultiple data sourcesnoveloutcome predictionpatient populationpatient privacypersonalized managementpersonalized predictionspersonalized risk predictionprecision medicinepredictive modelingprogramsrepositoryrisk predictionrisk prediction modelstudy populationsupervised learningtooltransfer learningtreatment responseuser-friendly
项目摘要
Project Summary
While clinical trials remain a critical source for oncology research, their study findings may not be gener-
alizable to the real world due to the restricted patient population. In recent years, due to the increasing adoption
of electronic health records (EHR) and the linkage of EHR with specimen bio-repositories and other research
registries, integrated large datasets now exist as a new source for translational research. These integrated
datasets open opportunities for developing accurate EHR-based prediction models for disease progression
and treatment response, which can be easily incorporated into clinical practice. These models can also be
contrasted with models derived from clinical trials, bridging the gap between clinical trials and the real world.
However, efficiently deriving and evaluating personalized prediction models using such real world data (RWD)
remains challenging due to practical and methodological obstacles. For example, validated outcome
information from EHR, such as development of colon cancer and 1-year treatment response, requires
laborious medical record review and hence is often not readily available for research. Naive use of error prone
surrogates of the outcome, such as billing codes or procedure codes, as the true outcome may greatly hamper
the power of EHR studies and produce biased results. Semi-supervised risk prediction methods, leveraging
noisy surrogates and a small amount of human annotations on the outcome, may greatly improve the utility of
EHR for precision medicine research. Deriving a precise estimate of the risk model becomes even more
challenging when the number of candidate features is not small relative to the number of annotated outcomes.
Another major challenge with EHR risk modeling lies in the transportability. Complex machine learning models
trained in one EHR system often attain low accuracy in another EHR system, due to the heterogeneity in the
patient population and healthcare system. Transfer learning methods that can automatically adjust model
developed for one EHR cohort to better fit to another EHR cohort is of great value. Synthesizing information
from multiple data sources can improve the quality of evidence. However, meta analyzing EHR from multiple
EHR cohorts faces an additional challenge due to patient privacy. We address these challenges by developing
semi-supervised risk prediction methods with high dimensional predictions in Aim 1; semi-supervised transfer
learning methods to enable risk prediction modeling in target populations with no gold standard labels uted
learin Aim 2; and distributed learning methods for high dimensional predictive modeling in Aim.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TIANXI CAI其他文献
TIANXI CAI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TIANXI CAI', 18)}}的其他基金
Bridging clinical trial and real-world data via machine learning to advance rheumatoid arthritis treatment strategies
通过机器学习连接临床试验和真实世界数据,以推进类风湿性关节炎的治疗策略
- 批准号:
10652251 - 财政年份:2022
- 资助金额:
$ 33.74万 - 项目类别:
Bridging clinical trial and real-world data via machine learning to advance rheumatoid arthritis treatment strategies
通过机器学习连接临床试验和真实世界数据,以推进类风湿性关节炎的治疗策略
- 批准号:
10339668 - 财政年份:2022
- 资助金额:
$ 33.74万 - 项目类别:
Studying exceptional treatment non-responders and genetics to predict treatment response in rheumatoid arthritis
研究特殊治疗无反应者和遗传学以预测类风湿关节炎的治疗反应
- 批准号:
10430273 - 财政年份:2021
- 资助金额:
$ 33.74万 - 项目类别:
Semi-supervised Approaches to Denoising Electronic Health Records Data for Risk Prediction
用于风险预测的电子健康记录数据去噪半监督方法
- 批准号:
10185327 - 财政年份:2021
- 资助金额:
$ 33.74万 - 项目类别:
Studying exceptional treatment non-responders and genetics to predict treatment response in rheumatoid arthritis
研究特殊治疗无反应者和遗传学以预测类风湿关节炎的治疗反应
- 批准号:
10301407 - 财政年份:2021
- 资助金额:
$ 33.74万 - 项目类别:
Semi-supervised Approaches to Denoising Electronic Health Records Data for Risk Prediction
用于风险预测的电子健康记录数据去噪半监督方法
- 批准号:
10617781 - 财政年份:2021
- 资助金额:
$ 33.74万 - 项目类别:
Robust Approaches to the Development and Evaluation of Prognostic Classifiers
预后分类器开发和评估的稳健方法
- 批准号:
8181612 - 财政年份:2007
- 资助金额:
$ 33.74万 - 项目类别:
Robust Approaches to the Development and Evaluation of Prognostic Classifiers
预后分类器开发和评估的稳健方法
- 批准号:
7356026 - 财政年份:2007
- 资助金额:
$ 33.74万 - 项目类别:
Robust Approaches to the Development and Evaluation of Prognostic Classifiers
预后分类器开发和评估的稳健方法
- 批准号:
7185413 - 财政年份:2007
- 资助金额:
$ 33.74万 - 项目类别:
Robust Approaches to the Development and Evaluation of Prognostic Classifiers
预后分类器开发和评估的稳健方法
- 批准号:
8501533 - 财政年份:2007
- 资助金额:
$ 33.74万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 33.74万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 33.74万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 33.74万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 33.74万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 33.74万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 33.74万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 33.74万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 33.74万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 33.74万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 33.74万 - 项目类别:
Standard Grant