Bridging clinical trial and real-world data via machine learning to advance rheumatoid arthritis treatment strategies
通过机器学习连接临床试验和真实世界数据,以推进类风湿性关节炎的治疗策略
基本信息
- 批准号:10339668
- 负责人:
- 金额:$ 74.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AftercareAutoimmuneClinicalClinical DataClinical ManagementClinical TrialsClinical assessmentsDataData SetDiseaseElectronic Health RecordGenetic Crossing OverGoldHealthcare SystemsHydroxychloroquineInflammatoryInstitutionJointsLinkMachine LearningMeasurementMethodologyMethodsMethotrexateModelingNational Institute of Arthritis and Musculoskeletal and Skin DiseasesOutcomeParticipantPatientsPhysiciansPopulationPrediction of Response to TherapyRandomizedRandomized Controlled Clinical TrialsRegistriesResearch DesignResourcesRheumatoid ArthritisSample SizeSiteStrategic PlanningSubgroupSulfasalazineSupervisionTNF geneTestingTherapy trialTreatment EffectivenessUnited States Department of Veterans AffairsWorkarmarthritis registryarthritis therapyarthropathiesbasecausal modelcompare effectivenessdata registryeffective therapyfunctional statusimprovedinhibitorinnovationmachine learning methodnoveloptimal treatmentspatient populationpatient subsetsperformance testspersonalized medicinepredicting responserecruitresponserheumatologistsupervised learningtreatment effecttreatment responsetreatment strategy
项目摘要
PROJECT SUMMARY/ABSTRACT
Rheumatoid arthritis (RA) is the most common autoimmune joint disease with over 15 treatment options,
reflecting both advances in therapy as well as the heterogenous response to therapy. After the first line
therapy methotrexate (MTX), patients and their rheumatologist proceed on a trial-and-error approach to identify
the optimal treatment. A landmark randomized controlled clinical trial (RCT), RACAT, compared the
effectiveness of triple therapy-MTX, sulfasalazine, and hydroxychloroquine vs MTX and a tumor necrosis factor
inhibitor (TNFi). The RACAT subgroup analyses observed that some patients had a better response to one
treatment strategy vs the other. However, like most RCTs, it was underpowered to better characterize these
subgroups. Real-world data (RWD), such as electronic health record (EHR) and registry data, have a larger
sample size but lack the randomization and precise clinical measurements performed as part of clinical trials.
The objective of this proposal is to apply and rigorously test state-of-the-art methods that can combine the
strengths of RCT and RWD to extend RCT findings. RACAT was a Veterans Affairs (VA) based clinical trial
and thus many of their subjects also have EHR data in parallel, providing an ideal study design to test methods
to understand how well we can replicated RCT using RWD. In Aim 1, we test methods using semi-supervised
machine learning methods to impute RACAT clinical endpoints using EHR data; the linked RACAT data will be
used as the gold standard comparison. Next, we apply causal inference modeling comparing triple therapy vs
TNFi using EHR data with the imputed endpoints and validate results using the linked RACAT data. In Aim 2,
we apply novel causal modeling methods that enable us to examine subgroup findings using RWD. We will
identify subjects in the larger EHR and registries similar to RACAT subgroups, i.e. patients who benefitted
more from triple therapy vs TNFi or vice versa, and subjects who remained on TNFi throughout the trial and did
well. These larger populations will provide improved power to study potential predictors of treatment response.
Moreover, the integration of EHR data allows us to study a broader set of potential predictors not collected in
RCT or registry data. Our overarching hypothesis is that we will identify the clinical subgroups observed in
RACAT with differing response to treatments within the larger populations of RA patients in EHR and registry.
We will also identify novel predictors of response by using a broader set of clinical data available in EHR. This
study is significant because it will provide a blueprint for studies for extending RCT findings in datasets with
linked RCT and RWD, applicable to many treatments and conditions. This study is innovative because of its
approach to maximize the data available from RCTs with existing RWD using linked datasets, powering studies
to optimize RA therapy for different patients. This proposal also anticipates the growing ability of patients and
institutions to access EHR data, enabling previously siloed datasets to become part of data-driven studies to
advance clinical management of RA and other conditions.
项目总结/摘要
风湿性关节炎(RA)是最常见的自身免疫性关节疾病,有超过15种治疗选择,
反映了治疗的进展以及对治疗的异质性反应。在第一行之后
治疗甲氨蝶呤(MTX),患者和他们的风湿病学家进行试验和错误的方法,以确定
最佳治疗。一项具有里程碑意义的随机对照临床试验(RCT)RACAT比较了
氨甲喋呤、柳氮磺吡啶和羟氯喹三联疗法与氨甲喋呤和肿瘤坏死因子联合治疗疗效比较
抑制剂(TNFi)。RACAT亚组分析观察到,一些患者对一种药物的反应更好,
治疗策略与其他然而,与大多数随机对照试验一样,
分组。真实世界数据(RWD),如电子健康记录(EHR)和注册数据,具有较大的
样本量,但缺乏随机化和精确的临床测量作为临床试验的一部分。
本提案的目的是应用并严格测试最先进的方法,这些方法可以将联合收割机
RCT和RWD的优势,以扩展RCT结果。RACAT是退伍军人事务部(VA)的临床试验
因此,他们的许多研究对象也有并行的EHR数据,为测试方法提供了理想的研究设计
来了解我们使用RWD复制RCT的效果。在目标1中,我们使用半监督的
使用EHR数据插补RACAT临床终点的机器学习方法;相关RACAT数据将
作为黄金标准比较。接下来,我们应用因果推理模型比较三联疗法与
TNFi使用EHR数据和插补终点,并使用链接的RACAT数据验证结果。在目标2中,
我们应用了新的因果建模方法,使我们能够使用RWD检查亚组结果。我们将
识别大型EHR和与RACAT亚组相似的登记研究中的受试者,即受益的患者
三联疗法与TNFi相比或相反,在整个试验期间保持TNFi治疗并
好.这些更大的人群将为研究治疗反应的潜在预测因素提供更高的把握度。
此外,EHR数据的整合使我们能够研究一组更广泛的潜在预测因素,而这些预测因素在
RCT或登记数据。我们的总体假设是,我们将确定在研究中观察到的临床亚组。
在EHR和登记研究中,RACAT在更大的RA患者人群中对治疗的反应不同。
我们还将通过使用EHR中可用的更广泛的临床数据集来确定新的反应预测因子。这
这项研究意义重大,因为它将为在数据集中扩展RCT结果的研究提供蓝图,
RCT和RWD相关,适用于多种治疗和疾病。这项研究之所以具有创新性,
使用关联数据集最大化RCT中可用数据的方法,使用现有RWD,为研究提供动力
为不同的患者优化RA治疗。该提案还预计患者的能力将不断提高,
机构访问EHR数据,使以前孤立的数据集成为数据驱动研究的一部分,
先进的RA和其他疾病的临床管理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TIANXI CAI其他文献
TIANXI CAI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TIANXI CAI', 18)}}的其他基金
Bridging clinical trial and real-world data via machine learning to advance rheumatoid arthritis treatment strategies
通过机器学习连接临床试验和真实世界数据,以推进类风湿性关节炎的治疗策略
- 批准号:
10652251 - 财政年份:2022
- 资助金额:
$ 74.84万 - 项目类别:
Semi-supervised Approaches to Denoising Electronic Health Records Data for Risk Prediction
用于风险预测的电子健康记录数据去噪半监督方法
- 批准号:
10453558 - 财政年份:2021
- 资助金额:
$ 74.84万 - 项目类别:
Studying exceptional treatment non-responders and genetics to predict treatment response in rheumatoid arthritis
研究特殊治疗无反应者和遗传学以预测类风湿关节炎的治疗反应
- 批准号:
10430273 - 财政年份:2021
- 资助金额:
$ 74.84万 - 项目类别:
Semi-supervised Approaches to Denoising Electronic Health Records Data for Risk Prediction
用于风险预测的电子健康记录数据去噪半监督方法
- 批准号:
10185327 - 财政年份:2021
- 资助金额:
$ 74.84万 - 项目类别:
Studying exceptional treatment non-responders and genetics to predict treatment response in rheumatoid arthritis
研究特殊治疗无反应者和遗传学以预测类风湿关节炎的治疗反应
- 批准号:
10301407 - 财政年份:2021
- 资助金额:
$ 74.84万 - 项目类别:
Semi-supervised Approaches to Denoising Electronic Health Records Data for Risk Prediction
用于风险预测的电子健康记录数据去噪半监督方法
- 批准号:
10617781 - 财政年份:2021
- 资助金额:
$ 74.84万 - 项目类别:
Robust Approaches to the Development and Evaluation of Prognostic Classifiers
预后分类器开发和评估的稳健方法
- 批准号:
8181612 - 财政年份:2007
- 资助金额:
$ 74.84万 - 项目类别:
Robust Approaches to the Development and Evaluation of Prognostic Classifiers
预后分类器开发和评估的稳健方法
- 批准号:
7356026 - 财政年份:2007
- 资助金额:
$ 74.84万 - 项目类别:
Robust Approaches to the Development and Evaluation of Prognostic Classifiers
预后分类器开发和评估的稳健方法
- 批准号:
7185413 - 财政年份:2007
- 资助金额:
$ 74.84万 - 项目类别:
Robust Approaches to the Development and Evaluation of Prognostic Classifiers
预后分类器开发和评估的稳健方法
- 批准号:
8501533 - 财政年份:2007
- 资助金额:
$ 74.84万 - 项目类别:
相似国自然基金
Autoimmune diseases therapies: variations on the microbiome in rheumatoid arthritis
- 批准号:31171277
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
IPP: AUTOIMMUNE DISEASES STATISTICAL AND CLINICAL COORDINATING CENTER (ADSCCC)
IPP:自身免疫性疾病统计和临床协调中心 (ADSCCC)
- 批准号:
10788032 - 财政年份:2023
- 资助金额:
$ 74.84万 - 项目类别:
Immunologic and Clinical Sequelae after COVID-19 in Patients with Systemic Autoimmune Rheumatic Diseases
系统性自身免疫性风湿病患者 COVID-19 后的免疫学和临床后遗症
- 批准号:
10583192 - 财政年份:2023
- 资助金额:
$ 74.84万 - 项目类别:
IPP: AUTOIMMUNE DISEASES STATISTICAL AND CLINICAL COORDINATING CENTER (ADSCCC)
IPP:自身免疫性疾病统计和临床协调中心 (ADSCCC)
- 批准号:
10788033 - 财政年份:2023
- 资助金额:
$ 74.84万 - 项目类别:
IPP: AUTOIMMUNE DISEASES STATISTICAL AND CLINICAL COORDINATING CENTER (ADSCCC)
IPP:自身免疫性疾病统计和临床协调中心 (ADSCCC)
- 批准号:
10678526 - 财政年份:2022
- 资助金额:
$ 74.84万 - 项目类别:
IPP: AUTOIMMUNE DISEASES STATISTICAL AND CLINICAL COORDINATING CENTER (ADSCCC)
IPP:自身免疫性疾病统计和临床协调中心 (ADSCCC)
- 批准号:
10688713 - 财政年份:2022
- 资助金额:
$ 74.84万 - 项目类别:
Derivation and validation of a clinical-molecular signature to predict fibrotic progression and treatment response in patients with autoimmune interstitial lung disease
推导和验证临床分子特征以预测自身免疫性间质性肺病患者的纤维化进展和治疗反应
- 批准号:
10275747 - 财政年份:2021
- 资助金额:
$ 74.84万 - 项目类别:
Investigation for clinical application of phospholipase D4 in autoimmune diseases
磷脂酶D4在自身免疫性疾病中的临床应用探讨
- 批准号:
21K08475 - 财政年份:2021
- 资助金额:
$ 74.84万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Machine learning approaches for clinical diagnosis of autoimmune diseases
用于自身免疫性疾病临床诊断的机器学习方法
- 批准号:
2876514 - 财政年份:2020
- 资助金额:
$ 74.84万 - 项目类别:
Studentship
Machine learning approaches for clinical diagnosis of autoimmune diseases
用于自身免疫性疾病临床诊断的机器学习方法
- 批准号:
2439889 - 财政年份:2020
- 资助金额:
$ 74.84万 - 项目类别:
Studentship
Oklahoma ACE: Molecular Deconstruction of Autoimmune Disease to Aid Clinical Trial Success
俄克拉荷马州 ACE:自身免疫性疾病的分子解构有助于临床试验的成功
- 批准号:
10608163 - 财政年份:2019
- 资助金额:
$ 74.84万 - 项目类别:














{{item.name}}会员




