Bridging clinical trial and real-world data via machine learning to advance rheumatoid arthritis treatment strategies

通过机器学习连接临床试验和真实世界数据,以推进类风湿性关节炎的治疗策略

基本信息

  • 批准号:
    10339668
  • 负责人:
  • 金额:
    $ 74.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT Rheumatoid arthritis (RA) is the most common autoimmune joint disease with over 15 treatment options, reflecting both advances in therapy as well as the heterogenous response to therapy. After the first line therapy methotrexate (MTX), patients and their rheumatologist proceed on a trial-and-error approach to identify the optimal treatment. A landmark randomized controlled clinical trial (RCT), RACAT, compared the effectiveness of triple therapy-MTX, sulfasalazine, and hydroxychloroquine vs MTX and a tumor necrosis factor inhibitor (TNFi). The RACAT subgroup analyses observed that some patients had a better response to one treatment strategy vs the other. However, like most RCTs, it was underpowered to better characterize these subgroups. Real-world data (RWD), such as electronic health record (EHR) and registry data, have a larger sample size but lack the randomization and precise clinical measurements performed as part of clinical trials. The objective of this proposal is to apply and rigorously test state-of-the-art methods that can combine the strengths of RCT and RWD to extend RCT findings. RACAT was a Veterans Affairs (VA) based clinical trial and thus many of their subjects also have EHR data in parallel, providing an ideal study design to test methods to understand how well we can replicated RCT using RWD. In Aim 1, we test methods using semi-supervised machine learning methods to impute RACAT clinical endpoints using EHR data; the linked RACAT data will be used as the gold standard comparison. Next, we apply causal inference modeling comparing triple therapy vs TNFi using EHR data with the imputed endpoints and validate results using the linked RACAT data. In Aim 2, we apply novel causal modeling methods that enable us to examine subgroup findings using RWD. We will identify subjects in the larger EHR and registries similar to RACAT subgroups, i.e. patients who benefitted more from triple therapy vs TNFi or vice versa, and subjects who remained on TNFi throughout the trial and did well. These larger populations will provide improved power to study potential predictors of treatment response. Moreover, the integration of EHR data allows us to study a broader set of potential predictors not collected in RCT or registry data. Our overarching hypothesis is that we will identify the clinical subgroups observed in RACAT with differing response to treatments within the larger populations of RA patients in EHR and registry. We will also identify novel predictors of response by using a broader set of clinical data available in EHR. This study is significant because it will provide a blueprint for studies for extending RCT findings in datasets with linked RCT and RWD, applicable to many treatments and conditions. This study is innovative because of its approach to maximize the data available from RCTs with existing RWD using linked datasets, powering studies to optimize RA therapy for different patients. This proposal also anticipates the growing ability of patients and institutions to access EHR data, enabling previously siloed datasets to become part of data-driven studies to advance clinical management of RA and other conditions.
项目总结/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TIANXI CAI其他文献

TIANXI CAI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TIANXI CAI', 18)}}的其他基金

Bridging clinical trial and real-world data via machine learning to advance rheumatoid arthritis treatment strategies
通过机器学习连接临床试验和真实世界数据,以推进类风湿性关节炎的治疗策略
  • 批准号:
    10652251
  • 财政年份:
    2022
  • 资助金额:
    $ 74.84万
  • 项目类别:
Semi-supervised Approaches to Denoising Electronic Health Records Data for Risk Prediction
用于风险预测的电子健康记录数据去噪半监督方法
  • 批准号:
    10453558
  • 财政年份:
    2021
  • 资助金额:
    $ 74.84万
  • 项目类别:
Studying exceptional treatment non-responders and genetics to predict treatment response in rheumatoid arthritis
研究特殊治疗无反应者和遗传学以预测类风湿关节炎的治疗反应
  • 批准号:
    10430273
  • 财政年份:
    2021
  • 资助金额:
    $ 74.84万
  • 项目类别:
Semi-supervised Approaches to Denoising Electronic Health Records Data for Risk Prediction
用于风险预测的电子健康记录数据去噪半监督方法
  • 批准号:
    10185327
  • 财政年份:
    2021
  • 资助金额:
    $ 74.84万
  • 项目类别:
Studying exceptional treatment non-responders and genetics to predict treatment response in rheumatoid arthritis
研究特殊治疗无反应者和遗传学以预测类风湿关节炎的治疗反应
  • 批准号:
    10301407
  • 财政年份:
    2021
  • 资助金额:
    $ 74.84万
  • 项目类别:
Semi-supervised Approaches to Denoising Electronic Health Records Data for Risk Prediction
用于风险预测的电子健康记录数据去噪半监督方法
  • 批准号:
    10617781
  • 财政年份:
    2021
  • 资助金额:
    $ 74.84万
  • 项目类别:
Robust Approaches to the Development and Evaluation of Prognostic Classifiers
预后分类器开发和评估的稳健方法
  • 批准号:
    8181612
  • 财政年份:
    2007
  • 资助金额:
    $ 74.84万
  • 项目类别:
Robust Approaches to the Development and Evaluation of Prognostic Classifiers
预后分类器开发和评估的稳健方法
  • 批准号:
    7356026
  • 财政年份:
    2007
  • 资助金额:
    $ 74.84万
  • 项目类别:
Robust Approaches to the Development and Evaluation of Prognostic Classifiers
预后分类器开发和评估的稳健方法
  • 批准号:
    7185413
  • 财政年份:
    2007
  • 资助金额:
    $ 74.84万
  • 项目类别:
Robust Approaches to the Development and Evaluation of Prognostic Classifiers
预后分类器开发和评估的稳健方法
  • 批准号:
    8501533
  • 财政年份:
    2007
  • 资助金额:
    $ 74.84万
  • 项目类别:

相似国自然基金

Autoimmune diseases therapies: variations on the microbiome in rheumatoid arthritis
  • 批准号:
    31171277
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

IPP: AUTOIMMUNE DISEASES STATISTICAL AND CLINICAL COORDINATING CENTER (ADSCCC)
IPP:自身免疫性疾病统计和临床协调中心 (ADSCCC)
  • 批准号:
    10788032
  • 财政年份:
    2023
  • 资助金额:
    $ 74.84万
  • 项目类别:
Immunologic and Clinical Sequelae after COVID-19 in Patients with Systemic Autoimmune Rheumatic Diseases
系统性自身免疫性风湿病患者 COVID-19 后的免疫学和临床后遗症
  • 批准号:
    10583192
  • 财政年份:
    2023
  • 资助金额:
    $ 74.84万
  • 项目类别:
IPP: AUTOIMMUNE DISEASES STATISTICAL AND CLINICAL COORDINATING CENTER (ADSCCC)
IPP:自身免疫性疾病统计和临床协调中心 (ADSCCC)
  • 批准号:
    10788033
  • 财政年份:
    2023
  • 资助金额:
    $ 74.84万
  • 项目类别:
IPP: AUTOIMMUNE DISEASES STATISTICAL AND CLINICAL COORDINATING CENTER (ADSCCC)
IPP:自身免疫性疾病统计和临床协调中心 (ADSCCC)
  • 批准号:
    10678526
  • 财政年份:
    2022
  • 资助金额:
    $ 74.84万
  • 项目类别:
IPP: AUTOIMMUNE DISEASES STATISTICAL AND CLINICAL COORDINATING CENTER (ADSCCC)
IPP:自身免疫性疾病统计和临床协调中心 (ADSCCC)
  • 批准号:
    10688713
  • 财政年份:
    2022
  • 资助金额:
    $ 74.84万
  • 项目类别:
Derivation and validation of a clinical-molecular signature to predict fibrotic progression and treatment response in patients with autoimmune interstitial lung disease
推导和验证临床分子特征以预测自身免疫性间质性肺病患者的纤维化进展和治疗反应
  • 批准号:
    10275747
  • 财政年份:
    2021
  • 资助金额:
    $ 74.84万
  • 项目类别:
Investigation for clinical application of phospholipase D4 in autoimmune diseases
磷脂酶D4在自身免疫性疾病中的临床应用探讨
  • 批准号:
    21K08475
  • 财政年份:
    2021
  • 资助金额:
    $ 74.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Machine learning approaches for clinical diagnosis of autoimmune diseases
用于自身免疫性疾病临床诊断的机器学习方法
  • 批准号:
    2876514
  • 财政年份:
    2020
  • 资助金额:
    $ 74.84万
  • 项目类别:
    Studentship
Machine learning approaches for clinical diagnosis of autoimmune diseases
用于自身免疫性疾病临床诊断的机器学习方法
  • 批准号:
    2439889
  • 财政年份:
    2020
  • 资助金额:
    $ 74.84万
  • 项目类别:
    Studentship
Oklahoma ACE: Molecular Deconstruction of Autoimmune Disease to Aid Clinical Trial Success
俄克拉荷马州 ACE:自身免疫性疾病的分子解构有助于临床试验的成功
  • 批准号:
    10608163
  • 财政年份:
    2019
  • 资助金额:
    $ 74.84万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了