Machine learning approaches towards risk assessment and prediction of adverse pregnancy outcomes

用于风险评估和预测不良妊娠结局的机器学习方法

基本信息

  • 批准号:
    10453757
  • 负责人:
  • 金额:
    $ 43.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY The primary objectives of this project include understanding the interplay between molecular, genetic and clinical factors related to adverse pregnancy outcomes (APOs), method development for accurate risk assessment of APOs well before they occur, and method development for collecting additional clinical data in routine treatment of at-risk-subjects. Towards these goals we have assembled a team of investigators with clinical, translational, and computational expertise capable of identifying novel contributors to APOs as well as facilitating clinician-patient interactions using data-driven and theoretically sound machine learning approaches. Our strategies will rely on advanced machine learning as well as integration of clinical, genetic, and molecular data and hold promise to bring precision medicine to the treatment and experience of women during and post pregnancy. We will predominantly rely on the data collected during the national “Nulliparous Pregnancy Outcomes Study: monitoring mothers-to-be”; i.e., the nuMoM2b study. Using the cohort of 10,038 nulliparous women, we will efficiently accomplish 3 Aims: to integrate genetic, clinical, and molecular features towards a deep understanding of APOs; to develop machine learning models for advanced risk prediction; and to engage in active data collection towards risk assessment and model development. Using a close collaboration between computational and clinical scientists, we believe this proposal will result in important advances in understanding the molecular and clinical aspects of APOs as well as assessing the risk for APOs and thus providing tangible contributions to maternal health.
项目摘要 该项目的主要目标包括了解分子,遗传之间的相互作用 和与不良妊娠结局有关的临床因素(APO),准确的方法开发 在APO发生之前对APO的风险评估,以及用于收集额外的方法开发 处于风险受试者的常规治疗中的临床数据。达到这些目标,我们组建了一个团队 具有临床,转化和计算专业知识的研究人员,能够识别新颖 使用数据驱动和 理论声音机器学习方法。我们的策略将依靠高级机器 学习以及临床,遗传和分子数据的整合,并有望带来 精确医学对妇女在怀孕期间的治疗和经验。我们将 主要依赖于国家“无效妊娠结局研究中收集的数据: 监测准母亲”;即NUMOM2B研究。使用10,038个无效妇女的队列,我们 将有效地完成3个目标:将遗传,临床和分子特征整合到深处 对Apos的理解;开发用于先进风险预测的机器学习模型;然后 参与积极的数据收集,以进行风险评估和模型开发。使用关闭 计算和临床科学家之间的合作,我们认为该建议将导致 了解APO的分子和临床方面以及评估的重要进展 APO的风险,从而为孕产妇健康提供了切实的贡献。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Using Association Rules to Understand the Risk of Adverse Pregnancy Outcomes in a Diverse Population.
使用关联规则了解不同人群中不良妊娠结果的风险。
A Probabilistic Approach to Extract Qualitative Knowledge for Early Prediction of Gestational Diabetes.
Searching and visualizing genetic associations of pregnancy traits by using GnuMoM2b.
使用 GnuMoM2b 搜索和可视化妊娠性状的遗传关联。
  • DOI:
    10.1093/genetics/iyad151
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Yan,Qi;Guerrero,RafaelF;Khan,RaiyanR;Surujnarine,AndyA;Wapner,RonaldJ;Hahn,MatthewW;Raja,Anita;Salleb-Aouissi,Ansaf;Grobman,WilliamA;Simhan,Hyagriv;Blue,NathanR;Silver,Robert;Chung,JudithH;Reddy,UmaM;Radivojac,Predrag
  • 通讯作者:
    Radivojac,Predrag
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DAVID M. HAAS其他文献

DAVID M. HAAS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DAVID M. HAAS', 18)}}的其他基金

Machine learning approaches towards risk assessment and prediction of adverse pregnancy outcomes
用于风险评估和预测不良妊娠结局的机器学习方法
  • 批准号:
    10226370
  • 财政年份:
    2020
  • 资助金额:
    $ 43.72万
  • 项目类别:
Machine learning approaches towards risk assessment and prediction of adverse pregnancy outcomes
用于风险评估和预测不良妊娠结局的机器学习方法
  • 批准号:
    10063323
  • 财政年份:
    2020
  • 资助金额:
    $ 43.72万
  • 项目类别:
Pharmacokinetics and modeling of betamethasone therapy in threatened preterm birth
先兆早产倍他米松治疗的药代动力学和模型
  • 批准号:
    9123871
  • 财政年份:
    2016
  • 资助金额:
    $ 43.72万
  • 项目类别:
Pharmacokinetics and modeling of betamethasone therapy in threatened preterm birth
先兆早产倍他米松治疗的药代动力学和模型
  • 批准号:
    10174278
  • 财政年份:
    2016
  • 资助金额:
    $ 43.72万
  • 项目类别:
Pharmacokinetics and modeling of betamethasone therapy in threatened preterm birth
先兆早产倍他米松治疗的药代动力学和模型
  • 批准号:
    9888973
  • 财政年份:
    2016
  • 资助金额:
    $ 43.72万
  • 项目类别:
Pregnancy as a Window to Future Cardiovascular Health
怀孕是未来心血管健康的窗口
  • 批准号:
    8576062
  • 财政年份:
    2013
  • 资助金额:
    $ 43.72万
  • 项目类别:
Indiana PREGMED
印第安纳预科
  • 批准号:
    8600300
  • 财政年份:
    2010
  • 资助金额:
    $ 43.72万
  • 项目类别:
Dissecting the Genetic Etiology of Preterm Birth in Nulliparous Women
剖析未产妇早产的遗传病因
  • 批准号:
    8013029
  • 财政年份:
    2010
  • 资助金额:
    $ 43.72万
  • 项目类别:
Dissecting the Genetic Etiology of Preterm Birth in Nulliparous Women
剖析未产妇早产的遗传病因
  • 批准号:
    8204688
  • 财政年份:
    2010
  • 资助金额:
    $ 43.72万
  • 项目类别:
Dissecting the Genetic Etiology of Preterm Birth in Nulliparous Women
剖析未产妇早产的遗传病因
  • 批准号:
    8605888
  • 财政年份:
    2010
  • 资助金额:
    $ 43.72万
  • 项目类别:

相似海外基金

Optimization and Validation of a Cost-effective Image-Guided Automated Extracapsular Extension Detection Framework through Interpretable Machine Learning in Head and Neck Cancer
通过可解释的机器学习在头颈癌中优化和验证具有成本效益的图像引导自动囊外扩展检测框架
  • 批准号:
    10648372
  • 财政年份:
    2023
  • 资助金额:
    $ 43.72万
  • 项目类别:
2023 Cellular and Molecular Mechanisms of Toxicity Gordon Research Conference and Seminar
2023细胞和分子毒性机制戈登研究会议暨研讨会
  • 批准号:
    10672627
  • 财政年份:
    2023
  • 资助金额:
    $ 43.72万
  • 项目类别:
The Biennial VA NCRAR Scientific Conference Series
两年一度的 VA NCRAR 科学会议系列
  • 批准号:
    10682490
  • 财政年份:
    2021
  • 资助金额:
    $ 43.72万
  • 项目类别:
Machine learning approaches towards risk assessment and prediction of adverse pregnancy outcomes
用于风险评估和预测不良妊娠结局的机器学习方法
  • 批准号:
    10226370
  • 财政年份:
    2020
  • 资助金额:
    $ 43.72万
  • 项目类别:
Machine learning approaches towards risk assessment and prediction of adverse pregnancy outcomes
用于风险评估和预测不良妊娠结局的机器学习方法
  • 批准号:
    10063323
  • 财政年份:
    2020
  • 资助金额:
    $ 43.72万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了