Oxygen and perioperative organ injury
氧气与围术期器官损伤
基本信息
- 批准号:10640944
- 负责人:
- 金额:$ 43.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-10 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:Acute Renal Failure with Renal Papillary NecrosisArteriesBlood VesselsBrain InjuriesCellsCessation of lifeClinical TrialsCollaborationsComplementFunctional disorderGenetic TranscriptionGenetically Engineered MouseHeart AtriumHeart InjuriesHemeHeme GroupHemoglobinHigh PrevalenceHyperoxiaHypoxiaHypoxia Inducible FactorInjury to KidneyInvestigationLaboratoriesLeadMeasurementMeasuresMediatingMolecularMolecular TargetMorbidity - disease rateMusMyocardiumNational Institute of General Medical SciencesOperative Surgical ProceduresOrganOxygenOxygen Therapy CarePathway interactionsPatient-Focused OutcomesPatientsPerioperativePerioperative complicationPlasma CellsPostoperative PeriodPre-Clinical ModelProspective, cohort studyProteinsResearchSamplingSignal TransductionSoluble Guanylate CyclaseTissue ModelTissuesTranscriptVascular Smooth Musclearteriolebiobankcirculating biomarkersexperienceexperimental studyhuman tissueimprovedlaboratory experimentlung injurymultimodalitynormoxianovelnovel therapeuticsorgan injuryoxidationoxidative damageoxidized lipidprogramsresponsetherapeutic targettherapy developmenttranscriptometranslational approach
项目摘要
Project Summary/Abstract
More than 20% of patients undergoing major surgery experience acute kidney, brain, and heart injury,
and these perioperative complications lead to persistent organ dysfunction, long-term morbidity, and death. My
research program is investigating and manipulating mechanisms of perioperative organ injury in order to
identify therapeutic targets and develop novel therapies. We are currently focused on the critical impact of
oxygen tension on organ injury, because perioperative oxygen administration is inconsistent, unguided, often
excessive, and potentially harmful. Both hypoxia and hyperoxia can be harmful to surgical patients, yet both
occur frequently, despite the ease with which the fraction of inspired oxygen (FiO2) can be manipulated in the
perioperative period. Our laboratory is focused on identifying and investigating molecular pathways and
therapeutic targets that a) impact oxygen tension in tissues during surgery and b) impact hypoxia- and
hyperoxia-mediated organ injury. We target these molecular pathways to reduce organ injury.
We have recently demonstrated that: 1) perioperative oxidative damage increases acute kidney, brain,
and heart injury; 2) intraoperative normoxia improves vascular reactivity compared to hyperoxia possibly by
reducing intraoperative oxidation of the heme moiety of vascular smooth muscle soluble guanylyl cyclase; 3)
normoxia upregulates hypoxia inducible factor (HIF)-regulated transcription and reduces circulating markers of
oxidative damage; and 4) increased circulating cell-free hemoglobin (Hb) oxidizes lipids and is independently
associated with postoperative kidney, lung, and brain injury. In the next 5 years we will investigate the effects
of oxygen tension on mechanisms of organ injury, including oxidative damage, vascular function, HIF signaling,
and cell free Hb-mediated organ injury, using a multifaceted translational approach. Our program combines
laboratory experiments in human tissues and preclinical models with prospective cohort studies and
mechanistic trials in patients having major surgery. We perform experiments on arterioles and arteries isolated
from patients during surgery to study the effects of hypoxic, normoxic, and hyperoxic treatments on vascular
function. We investigate the impact of oxygen treatments during preclinical models of acute kidney injury in
genetically engineered mice in collaboration with oxygen biologist nephrologist Volker Haase, and we are
measuring the effect of intraoperative hyperoxia vs. normoxia treatment in samples biobanked from the
NIGMS-supported ROCS clinical trial. Examples of these experiments include the measurement of HIF-
regulated transcripts in atrial myocardium and the oxidation state of the heme group in plasma cell-free Hb. We
will complement these hypothesis-driven experiments with unbiased approaches to measure the transcriptome
and protein responses in vascular and murine tissues to identify and support new paths of investigation.
This rigorous multimodal strategy provides the framework to advance the understanding of perioperative
organ injury and guide the development of therapies for hundreds of thousands of surgical patients.
项目总结/摘要
超过20%的接受大手术的患者经历急性肾、脑和心脏损伤,
并且这些围手术期并发症导致持续的器官功能障碍、长期发病和死亡。我
研究计划是调查和操纵围手术期器官损伤的机制,
确定治疗靶点并开发新疗法。我们目前关注的是
氧张力对器官损伤的影响,由于围手术期给氧不一致,无指导,
过量的,并且可能有害的。缺氧和高氧都可能对手术患者有害,但两者都
经常发生,尽管吸入氧气的分数(FiO 2)可以在
围手术期我们的实验室专注于识别和研究分子途径,
a)在手术期间影响组织中的氧张力和B)影响缺氧的治疗靶点-和
高氧介导的器官损伤。我们靶向这些分子途径以减少器官损伤。
我们最近已经证明:1)围手术期氧化损伤增加急性肾,脑,
和心脏损伤; 2)与高氧相比,术中常氧可能通过以下方式改善血管反应性:
减少血管平滑肌可溶性鸟苷酸环化酶的血红素部分的术中氧化; 3)
常氧上调缺氧诱导因子(HIF)调节的转录,并减少循环标志物
氧化损伤;和4)增加的循环无细胞血红蛋白(Hb)氧化脂质,并独立地
与术后肾、肺和脑损伤相关。在接下来的5年里,我们将研究
氧张力对器官损伤机制的影响,包括氧化损伤、血管功能、HIF信号传导,
和无细胞Hb介导的器官损伤。我们的计划结合了
在人体组织和临床前模型中进行的实验室实验,以及前瞻性队列研究,
在接受大手术的患者中进行的机械试验。我们在分离的小动脉和动脉上进行实验
研究低氧、常氧和高氧治疗对血管的影响,
功能我们研究了氧治疗在急性肾损伤临床前模型中的影响,
基因工程小鼠与氧生物学家肾脏学家Volker Haase合作,我们正在
测量术中高氧与常氧治疗对来自生物库的样本的影响
NIGMS支持的ROCS临床试验。这些实验的实例包括测量HIF-1 α。
调节转录在心房心肌和血红素组的氧化状态在血浆中的无细胞血红蛋白。我们
将补充这些假设驱动的实验与公正的方法来衡量转录组
以及血管和鼠组织中的蛋白质反应,以确定和支持新的研究途径。
这种严格的多模式策略提供了一个框架,以促进围手术期的理解
器官损伤,并指导数十万外科患者的治疗方法的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Frederic Tremaine Billings其他文献
Frederic Tremaine Billings的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Frederic Tremaine Billings', 18)}}的其他基金
Reducing Perioperative Oxidative Stress to Prevent Postoperative Chronic Pain Following Total Knee Arthroplasty
减少围术期氧化应激以预防全膝关节置换术后慢性疼痛
- 批准号:
10793361 - 财政年份:2023
- 资助金额:
$ 43.25万 - 项目类别:
Repurposing Montelukast for Cardiac Surgery-Associated Acute Kidney Injury
重新利用孟鲁司特治疗心脏手术相关的急性肾损伤
- 批准号:
10043764 - 财政年份:2020
- 资助金额:
$ 43.25万 - 项目类别:
Hyper-oxygenation, oxidative stress, and kidney injury following cardiac surgery
心脏手术后的高氧合、氧化应激和肾损伤
- 批准号:
9113044 - 财政年份:2015
- 资助金额:
$ 43.25万 - 项目类别:
Hyper-oxygenation, oxidative stress, and kidney injury following cardiac surgery
心脏手术后的高氧合、氧化应激和肾损伤
- 批准号:
9253963 - 财政年份:2015
- 资助金额:
$ 43.25万 - 项目类别:
Hyper-oxygenation, oxidative stress, and kidney injury following cardiac surgery
心脏手术后的高氧合、氧化应激和肾损伤
- 批准号:
8801217 - 财政年份:2015
- 资助金额:
$ 43.25万 - 项目类别:
Mitochondrial dysfunction, oxidative stress, and surgical acute kidney injury
线粒体功能障碍、氧化应激和手术急性肾损伤
- 批准号:
8885846 - 财政年份:2012
- 资助金额:
$ 43.25万 - 项目类别:
Mitochondrial dysfunction, oxidative stress, and surgical acute kidney injury
线粒体功能障碍、氧化应激和手术急性肾损伤
- 批准号:
8520356 - 财政年份:2012
- 资助金额:
$ 43.25万 - 项目类别:
Mitochondrial dysfunction, oxidative stress, and surgical acute kidney injury
线粒体功能障碍、氧化应激和手术急性肾损伤
- 批准号:
9262049 - 财政年份:2012
- 资助金额:
$ 43.25万 - 项目类别:
相似海外基金
Analysis of spatiotemporal involvement of retinoic acid in pharyngeal arch arteries
视黄酸对咽弓动脉的时空影响分析
- 批准号:
22KJ2601 - 财政年份:2023
- 资助金额:
$ 43.25万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Molecular identification of the oxygen sensor(s) in the fetal ductus arteriosus and pulmonary artery: an integrated multiomic comparison of mitochondria in vital fetal arteries with opposing oxygen responses
胎儿动脉导管和肺动脉中氧传感器的分子识别:对胎儿重要动脉中具有相反氧反应的线粒体进行综合多组学比较
- 批准号:
462691 - 财政年份:2022
- 资助金额:
$ 43.25万 - 项目类别:
Operating Grants
Understanding the regulatory control of complex blood flow in conduit arteries and veins
了解导管动脉和静脉中复杂血流的调节控制
- 批准号:
RGPIN-2021-02563 - 财政年份:2022
- 资助金额:
$ 43.25万 - 项目类别:
Discovery Grants Program - Individual
Fetal cerebral arteries and prenatal alcohol exposure
胎儿脑动脉和产前酒精暴露
- 批准号:
10337722 - 财政年份:2022
- 资助金额:
$ 43.25万 - 项目类别:
Fetal cerebral arteries and prenatal alcohol exposure
胎儿脑动脉和产前酒精暴露
- 批准号:
10590708 - 财政年份:2022
- 资助金额:
$ 43.25万 - 项目类别:
Pregnenolone constricts cerebral vascular arteries through the direct modulation of BK ion channels
孕烯醇酮通过直接调节 BK 离子通道收缩脑血管动脉
- 批准号:
10441131 - 财政年份:2021
- 资助金额:
$ 43.25万 - 项目类别:
Understanding the regulatory control of complex blood flow in conduit arteries and veins
了解导管动脉和静脉中复杂血流的调节控制
- 批准号:
DGECR-2021-00028 - 财政年份:2021
- 资助金额:
$ 43.25万 - 项目类别:
Discovery Launch Supplement
Association of brain temperature increase and cerebrospinal fluid dynamics in chronic brain ischemia due to main trunk occlusion of cerebral arteries
脑动脉主干闭塞所致慢性脑缺血脑温度升高与脑脊液动力学的关系
- 批准号:
21K09108 - 财政年份:2021
- 资助金额:
$ 43.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studying guinea pig development to discover how natural collateral arteries form
研究豚鼠的发育以发现自然侧支动脉是如何形成的
- 批准号:
10195510 - 财政年份:2021
- 资助金额:
$ 43.25万 - 项目类别:
Understanding the regulatory control of complex blood flow in conduit arteries and veins
了解导管动脉和静脉中复杂血流的调节控制
- 批准号:
RGPIN-2021-02563 - 财政年份:2021
- 资助金额:
$ 43.25万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




