Characterizing the molecular mechanisms of centriole duplication, growth and maturation
表征中心粒复制、生长和成熟的分子机制
基本信息
- 批准号:10640273
- 负责人:
- 金额:$ 56.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:Behavior ControlBiological ModelsCell CycleCellsCentriolesCentrosomeCiliaCongenital AbnormalityDaughterDrosophila genusDrosophila polo proteinElementsEquipment and supply inventoriesEtiologyEukaryotic CellExplosionFundingGoalsGrowthImageKnowledgeLengthMalignant NeoplasmsMicrotubulesMissionMitoticMitotic spindleMolecularMothersOrganellesPLK1 genePathologyPhosphorylationPhosphotransferasesProcentrioleProcessProteinsProteomicsPublic HealthPublishingRegulationResearchSeriesShapesSiteStructureUbiquitinationUnited States National Institutes of Healthcancer cellciliopathyfascinatefunctional genomicshuman diseaseoverexpressionpreventprogramsprotein complexrecruitrestrainttumorigenesis
项目摘要
PROJECT SUMMARY/ABSTRACT
Centrosomes are organelles used to build microtubule-based protein machines, including mitotic spindles and
cilia. At the centrosome core lies a pair of `mother-daughter' centrioles, barrel-shaped structures that act as the
duplicating elements of the organelle. Normally, the centriole pair duplicates only once each cell cycle and,
during mitotic entry, centrioles recruit a shell of pericentriolar material (PCM) – a process called `maturation' –
from which microtubules grow. Not only are they one of the largest protein complexes in eukaryotic cells but
one of the most ancient of organelles, and have fascinated cell biologists since their discovery in the late 19th
century. During the past 20 years, advances in imaging, proteomics and functional genomic screens have led
to an explosion of discoveries in the centrosome field. At present, we have a complete inventory of the proteins
comprising centrosomes. In our model system, Drosophila, centrosomes assemble from a surprisingly small
number of components (approximately 20). Despite these advances, many important questions remain
unanswered. Although only two conserved master-regulators, Polo kinase and Polo-like kinase 4 (Plk4), initiate
centriole maturation and duplication, respectively, it is not known how they are activated specifically on
centrioles. Also, what are the phosphorylation targets of these kinases and how do they promote centriole
duplication and maturation? How are mother centrioles restrained to spawn only a single daughter once per cell
cycle? How is centriole length controlled? Understanding these processes at the molecular level is important
because alterations in centrosome function or number cause a number of serious pathologies, including birth
defects, ciliopathies and cancer. Plk4 has been the centerpiece of our research program because it is both
necessary and sufficient to induce centrosome overduplication (amplification) when overexpressed, a scenario
observed in cancer cells. We have published a series of studies that have defined Plk4 regulation and identified
several of its substrates. Notably, Plk4 utilizes multiple mechanisms of control to restrain its activity and prevent
rampant centrosome overduplication, using an elaborate combination of autophosphorylation, ubiquitination and
autoinhibition. We continue to pursue two overarching goals: 1) identifying the molecular mechanisms that
suppress centrosome amplification (funded by R01 GM110166) and 2) characterizing the inherent mechanisms
that govern centrosome function and duplication (funded by R01 GM126035). Building on our progress during
the past five years, we propose to extend our studies that will define the mechanisms underlying the five
sequential steps in the assembly process. Specifically, we will determine (i) how a single site of daughter
centriole assembly is selected on mother centrioles, (ii) the composition of the pre-procentrioles and how it forms,
(iii) how nascent daughter centrioles assemble, (iv) how centriole growth is controlled, and (v) the initial steps in
centrosome maturation.
项目总结/文摘
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory Charles Rogers其他文献
Gregory Charles Rogers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregory Charles Rogers', 18)}}的其他基金
Characterizing the molecular mechanisms of centriole duplication, growth and maturation
表征中心粒复制、生长和成熟的分子机制
- 批准号:
10166887 - 财政年份:2020
- 资助金额:
$ 56.24万 - 项目类别:
Characterizing the molecular mechanisms of centriole duplication, growth and maturation
表征中心粒复制、生长和成熟的分子机制
- 批准号:
10405016 - 财政年份:2020
- 资助金额:
$ 56.24万 - 项目类别:
Identifying molecular mechanisms that suppress centriole amplification.
识别抑制中心粒扩增的分子机制。
- 批准号:
9055722 - 财政年份:2015
- 资助金额:
$ 56.24万 - 项目类别:
Identifying molecular mechanisms that suppress centriole amplification.
识别抑制中心粒扩增的分子机制。
- 批准号:
8884942 - 财政年份:2015
- 资助金额:
$ 56.24万 - 项目类别:
Identifying molecular mechanisms that suppress centriole amplification.
识别抑制中心粒扩增的分子机制。
- 批准号:
9267488 - 财政年份:2015
- 资助金额:
$ 56.24万 - 项目类别:
相似海外基金
Nonlocal Variational Problems from Physical and Biological Models
物理和生物模型的非局部变分问题
- 批准号:
2306962 - 财政年份:2023
- 资助金额:
$ 56.24万 - 项目类别:
Standard Grant
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
- 批准号:
10655174 - 财政年份:2023
- 资助金额:
$ 56.24万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2022
- 资助金额:
$ 56.24万 - 项目类别:
Discovery Grants Program - Individual
Micro-electrofluidic platforms for monitoring 3D human biological models
用于监测 3D 人体生物模型的微电流体平台
- 批准号:
DP220102872 - 财政年份:2022
- 资助金额:
$ 56.24万 - 项目类别:
Discovery Projects
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2021
- 资助金额:
$ 56.24万 - 项目类别:
Discovery Grants Program - Individual
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2020
- 资助金额:
$ 56.24万 - 项目类别:
Discovery Grants Program - Individual
Harnessing machine learning and cloud computing to test biological models of the role of white matter in human learning
利用机器学习和云计算来测试白质在人类学习中的作用的生物模型
- 批准号:
2004877 - 财政年份:2020
- 资助金额:
$ 56.24万 - 项目类别:
Fellowship Award
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9899988 - 财政年份:2019
- 资助金额:
$ 56.24万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2019
- 资助金额:
$ 56.24万 - 项目类别:
Discovery Grants Program - Individual
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9753458 - 财政年份:2019
- 资助金额:
$ 56.24万 - 项目类别: