Brain-wide representations of behavior during aversive internal states in C. elegans
线虫厌恶的内部状态下的全脑行为表征
基本信息
- 批准号:10638999
- 负责人:
- 金额:$ 38.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2028-02-29
- 项目状态:未结题
- 来源:
- 关键词:Animal ModelAnimalsArousalAtlasesBehaviorBehavioralBehavioral ParadigmBrainBrain regionCaenorhabditis elegansCalciumCellsComplexComputer ModelsCuesDataData SetEatingEnvironmentGenerationsGeneticGoalsHourImageInfectionModalityModelingMoodsMotivationMotorMotor outputNematodaNervous SystemNeuromodulatorNeuronsOutputPathway interactionsPopulationProcessRoleSensorySignal TransductionStereotypingStimulusStructureSystemTimeWorkbehavior influenceflexibilityimaging approachinsightneuralneural circuitneural correlateneural modelneuromechanismneuroregulationpathogenpathogenic bacteriaprogramstoolvirtual
项目摘要
As animals navigate their environments, their nervous systems transition between a wide range of
internal states that influence how sensory information is processed and how behaviors are generated. These
states of arousal, motivation, and mood typically persist for long durations of time, from minutes to hours, and
exert widespread effects across multiple sensory modalities and motor systems. Although most animals organize
their behavioral outputs in this state-like fashion, the neural mechanisms that underlie the generation of these
states are poorly understood. One prevailing hypothesis to explain how internal states are generated
suggests that fast timescale neural dynamics, which underlie moment-by-moment behavioral changes, might
be controlled over slower timescales by ascending pathways, most notably the neuromodulatory systems.
Indeed, small, defined subsets of neuromodulator-producing neurons can elicit internal state transitions in
many animals. Moreover, recent population-level recordings of neural activity have revealed that internal
states are accompanied by widespread, distributed changes in activity across many brain regions.
Remarkably, recent work has also shown that granular, moment-by-moment motor actions are reflected in
neural activity across many brain regions. This gives rise to a view that sensory signals, granular behavioral
signals, and internal state signals all co-occur in most brain circuits. However, how population-level activity
encodes a diverse set of behavioral parameters and how this encoding is influenced by internal states to
give rise to state-dependent behavioral changes is unknown. Here, we propose to tackle this problem in the
nematode C. elegans, whose crystalline nervous system, well-defined set of motor programs, and genetic
tractability should make it possible to build complete models of how neural activity encodes behavior across
distinct states. This proposal builds off new preliminary data. First, we developed a new recording platform
that enables brain-wide calcium imaging of freely-moving C. elegans with simultaneous quantification of the
diverse motor programs of the animal. We also built computational models that relate neural activity to
behavior with a high degree of precision. Surprisingly, this reveals that many C. elegans neurons encode
multiple ongoing motor programs and these encodings flexibly change over time. Moreover, we have
developed two behavioral paradigms in which we can elicit robust, stereotyped aversive internal states that
unfold over either minutes-long (Aim 1) or hours-long (Aim 2) timescales. We now propose to decipher how
each neuron across the C. elegans brain encodes precise behavioral features, creating an atlas of how
behaviors are encoded across the nervous system. We will then determine how minutes- or hours-long
internal states modulate neural activity across the brain. The comprehensive datasets that we will generate,
along with the computational models that we will build, will give rise to a clear understanding of internal state
structure in this animal and reveal basic principles that should guide future research in many animal models.
当动物在它们的环境中穿行时,它们的神经系统在广泛的
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Willem Flavell其他文献
Steven Willem Flavell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Willem Flavell', 18)}}的其他基金
Neural Mechanisms that Underlie Flexible Sensory Control of Behavioral States in C. elegans
线虫行为状态灵活感觉控制的神经机制
- 批准号:
10659880 - 财政年份:2023
- 资助金额:
$ 38.1万 - 项目类别:
Dissecting the functional organization of the serotonergic system in C. elegans
剖析线虫血清素系统的功能组织
- 批准号:
10542483 - 财政年份:2020
- 资助金额:
$ 38.1万 - 项目类别:
Dissecting the functional organization of the serotonergic system in C. elegans
剖析线虫血清素系统的功能组织
- 批准号:
10334517 - 财政年份:2020
- 资助金额:
$ 38.1万 - 项目类别:
Dissecting the functional organization of the serotonergic system in C. elegans
剖析线虫血清素系统的功能组织
- 批准号:
10725038 - 财政年份:2020
- 资助金额:
$ 38.1万 - 项目类别:
Dissecting the functional organization of the serotonergic system in C. elegans
剖析线虫血清素系统的功能组织
- 批准号:
10554333 - 财政年份:2020
- 资助金额:
$ 38.1万 - 项目类别:
Neuromodulatory control of collective circuit dynamics in C. elegans
线虫集体回路动力学的神经调节控制
- 批准号:
10207798 - 财政年份:2017
- 资助金额:
$ 38.1万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 38.1万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 38.1万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 38.1万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 38.1万 - 项目类别:
Discovery Early Career Researcher Award
Zootropolis: Multi-species archaeological, ecological and historical approaches to animals in Medieval urban Scotland
Zootropolis:苏格兰中世纪城市动物的多物种考古、生态和历史方法
- 批准号:
2889694 - 财政年份:2023
- 资助金额:
$ 38.1万 - 项目类别:
Studentship
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 38.1万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 38.1万 - 项目类别:
Training Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 38.1万 - 项目类别:
Continuing Grant
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 38.1万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 38.1万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)














{{item.name}}会员




