Dissecting the functional organization of the serotonergic system in C. elegans

剖析线虫血清素系统的功能组织

基本信息

项目摘要

The serotonergic system impacts a wide range of human behaviors and is a common target of psychiatric drugs. In mammals, neural circuits that receive serotonergic inputs are composed of diverse cell types, each of which expresses a subset of 14 distinct serotonin (5-HT) receptors. The impact of 5-HT release on circuit function involves the coordinated activation of many receptor types in distinct neurons. However, we do not yet understand the fundamental principles by which 5-HT acts at many sites within a circuit to coherently alter circuit function. Here, we propose to resolve this question in C. elegans. The C. elegans nervous system is particularly attractive for whole-circuit questions in neuroscience because it consists of exactly 302 neurons, every neuron can be identified in every animal, the synaptic connections between these neurons (the “connectome”) have been fully defined, and excellent genetic tools can be used to manipulate single cells in this well-defined system. Moreover, this animal’s transparency allows us to use cutting-edge imaging approaches – including whole-brain calcium imaging – to monitor neural activity in freely-behaving animals. Importantly, 5-HT signaling is well- conserved from C. elegans to mammals: C. elegans orthologs of human genes encode for 5-HT synthesis enzymes (TPH), vesicular and membrane transporters (VMAT, SERT), 5-HT receptors (5-HT1, 5-HT2, etc) and more. Thus, studies of this animal should reveal general principles of 5-HT function that can be subsequently applied to more complex animals. The studies in this proposal build off recently published work from my lab and new preliminary data. In a recent study, we found that food ingestion by C. elegans activates a specific 5-HTergic neuron, called NSM, whose release of 5-HT drives slow locomotion while animals feed. We also showed that this neuron’s dynamical response to food ingestion controls locomotion dynamics: different patterns of 5-HT release drive different locomotion changes. In new preliminary data, we have systematically examined how patterned 5-HT release impacts locomotion, begun mapping out the 5-HT receptors that mediate these effects, and developed an approach to monitor 5-HT-induced changes in whole-brain activity. In the current proposal, we will use this well-constrained experimental paradigm and these cutting-edge imaging approaches to probe the functional architecture of the 5-HT system and examine how 5-HT receptors interact to control brain function. Specifically, we will first map out the 5-HT receptors and circuits that mediate behavioral responses to different patterns of 5-HT release (Aim 1). In a second aim, we will use new calcium imaging approaches to determine how different patterns of 5-HT release engage different 5-HT receptor types to alter whole-brain activity (Aim 2). Finally, we will also examine how aversive cues that antagonize 5-HT signaling modulate the function of serotonergic circuits, allowing animals to balance aversive and appetitive inputs (Aim 3). These studies will reveal how patterned 5-HT release engages specific 5-HT receptor types to impact brain function, yielding a new framework for 5-HT circuit organization and function.
血清素能系统影响广泛的人类行为,是精神病学的共同目标 药物。在哺乳动物中,接收血清素输入的神经回路由不同的细胞类型组成,每种细胞类型 它表达 14 种不同血清素 (5-HT) 受体的子集。 5-HT释放对电路功能的影响 涉及不同神经元中许多受体类型的协调激活。然而,我们还没有 了解 5-HT 在电路内多个部位发挥作用以连贯地改变电路的基本原理 功能。在这里,我们建议在线虫中解决这个问题。秀丽隐杆线虫的神经系统特别 对于神经科学中的全电路问题很有吸引力,因为它由 302 个神经元组成,每个神经元 可以在每只动物中识别出,这些神经元之间的突触连接(“连接组”)具有 已经完全定义,并且可以使用优秀的遗传工具来操纵这个定义明确的系统中的单细胞。 此外,这种动物的透明度使我们能够使用最先进的成像方法——包括全脑成像 钙成像——监测自由行为动物的神经活动。重要的是,5-HT 信号传导非常好—— 从线虫到哺乳动物保守:编码 5-HT 合成的人类基因的线虫直系同源物 酶 (TPH)、囊泡和膜转运蛋白 (VMAT、SERT)、5-HT 受体(5-HT1、5-HT2 等)和 更多的。因此,对该动物的研究应该揭示 5-HT 功能的一般原理,随后可以对其进行研究。 应用于更复杂的动物。本提案中的研究以我的实验室最近发表的工作为基础 新的初步数据。在最近的一项研究中,我们发现线虫摄入食物会激活特定的 5-HTergic 神经元,称为 NSM,在动物进食时释放 5-HT 驱动缓慢运动。我们还表明 该神经元对食物摄入的动态反应控制着运动动力学:5-HT 的不同模式 释放驱动不同的运动变化。在新的初步数据中,我们系统地研究了如何 模式化 5-HT 释放影响运动,开始绘制介导这些影响的 5-HT 受体, 并开发了一种监测 5-HT 诱导的全脑活动变化的方法。在目前的提案中, 我们将使用这种严格约束的实验范式和这些尖端的成像方法来探索 5-HT 系统的功能架构,并检查 5-HT 受体如何相互作用来控制大脑功能。 具体来说,我们将首先绘制出介导对不同行为反应的 5-HT 受体和电路。 5-HT 释放模式(目标 1)。第二个目标是,我们将使用新的钙成像方法来确定 不同的 5-HT 释放模式如何结合不同的 5-HT 受体类型来改变全脑活动(目标 2)。 最后,我们还将研究拮抗 5-HT 信号传导的厌恶信号如何调节 血清素能回路,使动物能够平衡厌恶和食欲输入(目标 3)。这些研究将揭示 模式化 5-HT 释放如何结合特定 5-HT 受体类型影响大脑功能,从而产生新的 5-HT 电路组织和功能的框架。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven Willem Flavell其他文献

Steven Willem Flavell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven Willem Flavell', 18)}}的其他基金

Neural Mechanisms that Underlie Flexible Sensory Control of Behavioral States in C. elegans
线虫行为状态灵活感觉控制的神经机制
  • 批准号:
    10659880
  • 财政年份:
    2023
  • 资助金额:
    $ 28.97万
  • 项目类别:
Brain-wide representations of behavior during aversive internal states in C. elegans
线虫厌恶的内部状态下的全脑行为表征
  • 批准号:
    10638999
  • 财政年份:
    2023
  • 资助金额:
    $ 28.97万
  • 项目类别:
Dissecting the functional organization of the serotonergic system in C. elegans
剖析线虫血清素系统的功能组织
  • 批准号:
    10542483
  • 财政年份:
    2020
  • 资助金额:
    $ 28.97万
  • 项目类别:
Dissecting the functional organization of the serotonergic system in C. elegans
剖析线虫血清素系统的功能组织
  • 批准号:
    10725038
  • 财政年份:
    2020
  • 资助金额:
    $ 28.97万
  • 项目类别:
Dissecting the functional organization of the serotonergic system in C. elegans
剖析线虫血清素系统的功能组织
  • 批准号:
    10554333
  • 财政年份:
    2020
  • 资助金额:
    $ 28.97万
  • 项目类别:
Neuromodulatory control of collective circuit dynamics in C. elegans
线虫集体回路动力学的神经调节控制
  • 批准号:
    10207798
  • 财政年份:
    2017
  • 资助金额:
    $ 28.97万
  • 项目类别:

相似海外基金

How Spinal Afferent Neurons Control Appetite and Thirst
脊髓传入神经元如何控制食欲和口渴
  • 批准号:
    DP220100070
  • 财政年份:
    2023
  • 资助金额:
    $ 28.97万
  • 项目类别:
    Discovery Projects
The mechanisms of the signal transduction from brown adipocytes to afferent neurons and its significance.
棕色脂肪细胞向传入神经元的信号转导机制及其意义。
  • 批准号:
    23K05594
  • 财政年份:
    2023
  • 资助金额:
    $ 28.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
  • 批准号:
    10315571
  • 财政年份:
    2021
  • 资助金额:
    $ 28.97万
  • 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
  • 批准号:
    10477437
  • 财政年份:
    2021
  • 资助金额:
    $ 28.97万
  • 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
  • 批准号:
    10680037
  • 财政年份:
    2021
  • 资助金额:
    $ 28.97万
  • 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
  • 批准号:
    10654779
  • 财政年份:
    2021
  • 资助金额:
    $ 28.97万
  • 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
  • 批准号:
    10275133
  • 财政年份:
    2021
  • 资助金额:
    $ 28.97万
  • 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
  • 批准号:
    10470747
  • 财政年份:
    2021
  • 资助金额:
    $ 28.97万
  • 项目类别:
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
  • 批准号:
    RGPIN-2014-05517
  • 财政年份:
    2018
  • 资助金额:
    $ 28.97万
  • 项目类别:
    Discovery Grants Program - Individual
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
  • 批准号:
    RGPIN-2014-05517
  • 财政年份:
    2017
  • 资助金额:
    $ 28.97万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了