Neuromodulatory control of collective circuit dynamics in C. elegans
线虫集体回路动力学的神经调节控制
基本信息
- 批准号:10207798
- 负责人:
- 金额:$ 45.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-25 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAfferent NeuronsAnimal BehaviorAnimal FeedAnimalsArousalBehaviorBehavioralBehavioral ModelBiogenic AminesBrainBrain regionCaenorhabditis elegansCalciumCellsCircadian RhythmsCognitiveComplexCuesDataDrosophila genusEmotionalEnvironmentExposure toFoodGenerationsGenesGeneticGlobal ChangeGoalsHourImageImaging technologyInvertebratesLabelLaboratoriesLinkMachine LearningMammalsMapsMeasurementMethodsMicroscopyModelingMonitorMovementNematodaNervous system structureNeuromodulatorNeuronsNeuropeptidesNeurophysiology - biologic functionNeurosciencesOpticsOutputPatternPhysiologySensorySerotoninSiteSleepStretchingStructureSynapsesSynaptic TransmissionSystemSystems TheoryTestingTimeTrainingUrsidae FamilyWorkbehavior influencebehavioral studyconnectomedensitydynamic systemfood environmentinsightinterdisciplinary approachmillisecondmutantnetwork modelsneural circuitneural patterningneuromechanismneuroregulationneurotransmitter releasenew technologyoptogeneticsrecurrent neural networkrelating to nervous systemsensory inputsquid axontool
项目摘要
Many animal behaviors are organized into long-lasting states, perhaps most strikingly in the sleep/wake
and emotional states that mammals display. However, the fundamental mechanisms that allow animals to
initiate, maintain and terminate these states are unknown. Biogenic amine and neuropeptide neuromodulators
are critical for the generation of behavioral states, but a mechanistic understanding of how neuromodulators act
on circuits to generate stable circuit-wide patterns of neural activity has been lacking, largely due to the
complexity of neuromodulation in mammalian circuits. We have chosen to tackle this problem using C. elegans,
a nematode whose nervous system consists of 302 neurons with a fully defined wiring diagram. We previously
characterized C. elegans movement patterns and showed that feeding animals transition between two stable
arousal states, roaming and dwelling. We characterized the neural circuit that generates roaming and dwelling
states, and found that two opposing neuromodulators, serotonin and the neuropeptide PDF, act on a defined
neural circuit to generate this bi-stable behavior: serotonin action on the circuit stabilizes dwelling states, while
PDF stabilizes roaming states. Now that we have defined a neuromodulatory circuit that generates persistent
behavioral states, we are poised to resolve several fundamental questions about neural circuit function and
organization. Here, we propose to dissect mechanisms of neural circuit persistence by examining how specific
neuromodulators reconfigure neural circuits to stabilize circuit-wide activity patterns that give rise to long-lasting
behavioral states. Resolving this question requires whole-circuit measurements of neural activity as animals
freely transition between states. Thus, we have already developed a new imaging technology that allows us to
simultaneously monitor the activity of every neuron in a circuit in freely-moving C. elegans animals. By combining
this imaging technology with genetic/optogenetic manipulations and new analysis/modeling methods, we will
illustrate a new multi-disciplinary approach that can be used to dissect the mechanisms by which collective neural
dynamics arise in a circuit. First, we will first identify the circuit-wide patterns of activity that define different
behavioral states (Aim 1). Second, we will perturb this system to examine how neuromodulators act on specific
neurons in the circuit to generate these stable circuit-wide patterns of activity (Aim 2). Finally, we will determine
how activity in this neuromodulatory circuit is altered by changes in the environment and, after simultaneously
recording the sensory neurons that feed into this circuit, we will develop a network model that describes how
noisy sensory inputs are transformed into a bi-stable behavioral state output (Aim 3). These studies will provide
new mechanistic insights into how neuromodulators orchestrate whole-circuit changes in activity to influence
behavior. By providing quantitative links between specific sites of neuromodulation, whole-circuit dynamics, and
emergent behaviors, these studies will yield a generalizable model for circuit function that will bear on studies of
sleep/wake states, emotional states, and cognitive states.
许多动物的行为被组织成长期持续的状态,也许最引人注目的是在睡眠/清醒状态
和情绪状态的区别然而,让动物能够
初始化、维持和终止这些状态是未知。生物胺和神经肽神经调节剂
对于行为状态的产生至关重要,但对神经调节剂如何起作用的机械理解
在电路上产生稳定的电路范围内的神经活动模式一直缺乏,主要是由于
哺乳动物回路中神经调节的复杂性。我们选择使用C来解决这个问题。优雅,
一种神经系统由302个神经元组成的线虫,有一个完全明确的线路图。我们之前
特征C. elegans运动模式,并表明,喂养动物之间的两个稳定的过渡
唤醒状态漫游和居住我们描述了产生漫游和居住的神经回路
他发现,两种相反的神经调节剂,血清素和神经肽PDF,作用于一个定义的
神经回路产生这种双稳态行为:血清素对回路的作用稳定了居住状态,
PDF稳定漫游状态。既然我们已经定义了一个神经调节回路,
行为状态,我们准备解决有关神经回路功能的几个基本问题,
organization.在这里,我们建议通过研究如何具体的神经回路持续性解剖机制,
神经调质重新配置神经回路,以稳定回路范围的活动模式,
行为状态解决这个问题需要对动物的神经活动进行全回路测量
在国家之间自由转换。因此,我们已经开发出一种新的成像技术,
同时监测自由运动的C神经回路中每个神经元的活动。优雅的动物。通过组合
这种成像技术与遗传/光遗传学操纵和新的分析/建模方法,我们将
说明了一种新的多学科方法,可用于剖析集体神经元
动态在电路中出现。首先,我们将首先确定电路范围的活动模式,这些模式定义了不同的
行为状态(目标1)。第二,我们将扰乱这个系统,以检查神经调节剂如何作用于特定的神经元。
神经元在电路中产生这些稳定的电路范围内的活动模式(目的2)。最后,我们将确定
神经调节回路的活动如何被环境的变化所改变,
记录进入这个回路的感觉神经元,我们将开发一个网络模型,描述如何
将嘈杂的感觉输入转换为双稳态行为状态输出(Aim 3)。这些研究将提供
神经调节剂如何协调活动中的整个回路变化以影响
行为通过提供神经调节的特定位点、全回路动力学和
紧急行为,这些研究将产生一个可推广的模型,电路功能,将承担研究
睡眠/清醒状态、情绪状态和认知状态。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters.
- DOI:10.1038/s41589-018-0004-9
- 发表时间:2018-04
- 期刊:
- 影响因子:14.8
- 作者:Piatkevich KD;Jung EE;Straub C;Linghu C;Park D;Suk HJ;Hochbaum DR;Goodwin D;Pnevmatikakis E;Pak N;Kawashima T;Yang CT;Rhoades JL;Shemesh O;Asano S;Yoon YG;Freifeld L;Saulnier JL;Riegler C;Engert F;Hughes T;Drobizhev M;Szabo B;Ahrens MB;Flavell SW;Sabatini BL;Boyden ES
- 通讯作者:Boyden ES
Host-microbe interactions and the behavior of Caenorhabditis elegans.
宿主 - 微生物相互作用和秀丽隐杆线虫的行为。
- DOI:10.1080/01677063.2020.1802724
- 发表时间:2020-09
- 期刊:
- 影响因子:1.9
- 作者:Kim DH;Flavell SW
- 通讯作者:Flavell SW
Whole-organism behavioral profiling reveals a role for dopamine in state-dependent motor program coupling in C. elegans
- DOI:10.7554/elife.57093
- 发表时间:2020-06-08
- 期刊:
- 影响因子:7.7
- 作者:Cermak, Nathan;Yu, Stephanie K.;Flavell, Steven W.
- 通讯作者:Flavell, Steven W.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Willem Flavell其他文献
Steven Willem Flavell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Willem Flavell', 18)}}的其他基金
Neural Mechanisms that Underlie Flexible Sensory Control of Behavioral States in C. elegans
线虫行为状态灵活感觉控制的神经机制
- 批准号:
10659880 - 财政年份:2023
- 资助金额:
$ 45.57万 - 项目类别:
Brain-wide representations of behavior during aversive internal states in C. elegans
线虫厌恶的内部状态下的全脑行为表征
- 批准号:
10638999 - 财政年份:2023
- 资助金额:
$ 45.57万 - 项目类别:
Dissecting the functional organization of the serotonergic system in C. elegans
剖析线虫血清素系统的功能组织
- 批准号:
10542483 - 财政年份:2020
- 资助金额:
$ 45.57万 - 项目类别:
Dissecting the functional organization of the serotonergic system in C. elegans
剖析线虫血清素系统的功能组织
- 批准号:
10334517 - 财政年份:2020
- 资助金额:
$ 45.57万 - 项目类别:
Dissecting the functional organization of the serotonergic system in C. elegans
剖析线虫血清素系统的功能组织
- 批准号:
10725038 - 财政年份:2020
- 资助金额:
$ 45.57万 - 项目类别:
Dissecting the functional organization of the serotonergic system in C. elegans
剖析线虫血清素系统的功能组织
- 批准号:
10554333 - 财政年份:2020
- 资助金额:
$ 45.57万 - 项目类别:
相似海外基金
How Spinal Afferent Neurons Control Appetite and Thirst
脊髓传入神经元如何控制食欲和口渴
- 批准号:
DP220100070 - 财政年份:2023
- 资助金额:
$ 45.57万 - 项目类别:
Discovery Projects
The mechanisms of the signal transduction from brown adipocytes to afferent neurons and its significance.
棕色脂肪细胞向传入神经元的信号转导机制及其意义。
- 批准号:
23K05594 - 财政年份:2023
- 资助金额:
$ 45.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10477437 - 财政年份:2021
- 资助金额:
$ 45.57万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10315571 - 财政年份:2021
- 资助金额:
$ 45.57万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10680037 - 财政年份:2021
- 资助金额:
$ 45.57万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10654779 - 财政年份:2021
- 资助金额:
$ 45.57万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10275133 - 财政年份:2021
- 资助金额:
$ 45.57万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10470747 - 财政年份:2021
- 资助金额:
$ 45.57万 - 项目类别:
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2018
- 资助金额:
$ 45.57万 - 项目类别:
Discovery Grants Program - Individual
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2017
- 资助金额:
$ 45.57万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




