Kilohertz 3D Optical Mapping of Atrial Fibrillation in Beating Zebrafish Hearts
斑马鱼心脏跳动中心房颤动的千赫兹 3D 光学测绘
基本信息
- 批准号:10640170
- 负责人:
- 金额:$ 56.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAction PotentialsAddressAlgorithmsAnimalsArrhythmiaAtrial FibrillationBlood flowCalciumCardiacCardiovascular systemCellsClinicalColorColumbidaeContractsCouplingData AnalysesEconomic BurdenEmbryoEmerging TechnologiesFacultyFluorescenceFluorescence MicroscopyFunctional disorderGoalsHeartHeart AtriumHumanImageIschemic StrokeKnowledgeLightMLLT3 geneMapsMechanicsMediatingMedicineMembraneMethodsMicroscopeMicroscopyModelingMorbidity - disease rateMorphologic artifactsMotionMovementMyocardialMyocardial ContractionMyocardiumOpticsPalpitationsParalysedPathogenesisPatternPerformancePhenotypeProcessPropertyRecordsReproductionResearchResearch PersonnelResolutionRisk FactorsRotationSamplingScanningSignal TransductionSpeedSystemTechniquesTestingThree-Dimensional ImagingTimeVentricularVisualizationX-Ray Computed TomographyZebrafishcardiogenesisexperiencefluorophoreheart functionheart motionhemodynamicsinnovationinterestlensmortalitymoviemultiplexed imagingoptical imagingpharmacologicreconstructionspatiotemporalspectrographtemporal measurementtomographytwo-dimensionalvirtualvoltage
项目摘要
Project Summary: Atrial fibrillation (AF) is the most frequent cardiac arrhythmia, and it is a major risk factor for
ischemic stroke and provokes morbidity and mortality along with a significant economic burden. Although AF has
been studied in various animals, the embryonic zebrafish has been the genetically tractable and optically
transparent model to investigate electromechanical coupling during cardiac development. Like in humans, the
action potential and the consequent myocardial contraction are also key indicators of cardiac function in the
zebrafish. By virtual of its transparency, optical mapping has been a primary means to investigate the interplay
between cardiac action potential and myocardial contraction to study the mechanisms of AF.
Dysregulation of electrical and mechanical coupling is a significant factor underlying the pathogenesis and
perpetuation of AF. Optical mapping of electromechanical decoupling in zebrafish is nontrivial because it requires
simultaneous recording of fast propagating voltage waves and myocardial contraction. Particularly in a beating
heart, the rapid myocardial contraction can easily blur the image—the motion artifacts superimpose the wave
patterns appearing in the optical maps and can prohibit further analysis of the imaging data. Pharmacological
uncoupling has been widely used to suppress heart motion. However, this makes studying electromechanical
coupling impossible. Alternatively, post-acquisition synchronization approach records a z-stack of movies, each
covering at least one cardiac cycle. After the recording is completed, one 3D cardiac cycle can be reconstructed
by synchronizing the movies in time. Nonetheless, this method is inapplicable to nonperiodic movements, such
as irregular heartbeats with AF. Therefore, there is an unmet need to develop innovative optical techniques for
high-speed 3D mapping of electromechanical coupling in a rapidly and irregularly beating AF heart.
To solve this problem, we propose to develop a light-sheet light-field tomography (light-sheet LIFT) technique
for kilohertz 3D imaging of electromechanical coupling in zebrafish hearts undergoing AF. Our method has only
recently become possible due to two emerging technologies, light-field tomography (LIFT) and light-sheet
microscopy, both of which we have extensive experience with. We will integrate LIFT with light-sheet microscopy
and enable high-resolution 3D imaging with an unprecedented volumetric frame rate. The resultant system, light-
sheet LIFT, will provide enough spatiotemporal resolution to fully depict the interplay between voltage waves,
myocardial contraction, and intracardiac blood flow in a pitx2c zebrafish arrhythmia model. We expect our
method will advance the understanding of AF's fundamental mechanism from the electrical activities at a single-
cell level.
项目摘要:心房颤动(AF)是最常见的心律失常,也是导致心律失常的主要危险因素。
缺血性中风会引起发病率和死亡率以及巨大的经济负担。虽然AF有
经过对各种动物的研究,斑马鱼胚胎在遗传上是易驯化的,并且在光学上
研究心脏发育过程中机电耦合的透明模型。就像人类一样,
动作电位和随之而来的心肌收缩也是心脏功能的关键指标
斑马鱼。由于其透明性,光学测绘已成为研究相互作用的主要手段
心脏动作电位和心肌收缩之间的关系,以研究 AF 的机制。
电气和机械耦合失调是发病机制和潜在的重要因素
AF 的永久存在。斑马鱼机电解耦的光学测绘非常重要,因为它需要
同时记录快速传播的电压波和心肌收缩。尤其是在殴打的情况下
心脏,快速的心肌收缩很容易使图像模糊——运动伪影叠加了波
光学图中出现的图案可能会阻碍对成像数据的进一步分析。药理作用
解偶联已被广泛用于抑制心脏运动。然而,这使得学习机电
耦合不可能。或者,采集后同步方法记录电影的 z 堆栈,每个电影
覆盖至少一个心动周期。记录完成后,可重建一个3D心动周期
通过及时同步电影。尽管如此,这种方法不适用于非周期运动,例如
如 AF 引起的心律不齐。因此,开发创新光学技术的需求尚未得到满足。
快速且不规则跳动的 AF 心脏中机电耦合的高速 3D 测绘。
为了解决这个问题,我们建议开发一种光片光场断层扫描(light-sheet LIFT)技术
用于对发生 AF 的斑马鱼心脏进行机电耦合的千赫兹 3D 成像。我们的方法只有
由于光场断层扫描 (LIFT) 和光片这两种新兴技术,最近成为可能
显微镜,我们在这方面都拥有丰富的经验。我们将 LIFT 与光片显微镜集成
并以前所未有的体积帧速率实现高分辨率 3D 成像。由此产生的系统,光
LIFT 片将提供足够的时空分辨率来充分描绘电压波之间的相互作用,
pitx2c 斑马鱼心律失常模型中的心肌收缩和心内血流。我们期望我们的
该方法将促进对单次电活动的 AF 基本机制的理解
细胞水平。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liang Gao其他文献
Liang Gao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Liang Gao', 18)}}的其他基金
Kilohertz 3D Optical Mapping of Atrial Fibrillation in Beating Zebrafish Hearts
斑马鱼心脏跳动中心房颤动的千赫兹 3D 光学测绘
- 批准号:
10510352 - 财政年份:2022
- 资助金额:
$ 56.39万 - 项目类别:
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 56.39万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 56.39万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 56.39万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 56.39万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 56.39万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 56.39万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 56.39万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 56.39万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 56.39万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 56.39万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 56.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)