Computational Diffusion MRI for Studying Early Human Brain Development
用于研究人类早期大脑发育的计算扩散 MRI
基本信息
- 批准号:10643981
- 负责人:
- 金额:$ 37.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultAffectAlgorithmsAnatomyAnisotropyAwardAxonBehaviorBig DataBrainChildCommunitiesComplexCrownsDataDedicationsDendritesDevelopmentDiffusionDiffusion Magnetic Resonance ImagingEnvironmentExhibitsExtracellular MatrixFiberGeometryGoalsGrowthHumanImageInfantLifeMagnetic Resonance ImagingMeasurementMethodsMinnesotaMyelinNatureNeuritesNeurodevelopmental DisorderNeurologicNeurosciencesNorth CarolinaPathway interactionsPatternProcessPropertyProtocols documentationResearchResearch PersonnelSignal TransductionSiteStructureTechniquesTimeTissuesUniversitiesbrain tissuecomputerized toolsconnectomecritical perioddata harmonizationdeep learningdesigndevelopmental diseasediffusion anisotropyempowermentimaging modalityimprovedmyelinationtooltractographywhite matter
项目摘要
Computational Diffusion MRI for Studying Early Human Brain Development
Abstract
In the first years of life, the human brain develops dynamically in both structure and function. Many neurodevel-
opmental disorders are associated with aberrations from normative growth during this critical period of early brain
development. The increasing availability of longitudinal baby MRI data, such as those acquired through the Baby
Connectome Project (BCP), affords unprecedented opportunity for precise charting of early brain developmental
trajectories in order to understand normative and aberrant growth. Dedicated computational tools are needed for
accurate processing and analysis of baby MR images, which typically exhibit dynamic heterogeneous changes
across time. The goal of this project is to equip brain researchers with computational tools effective for studying
the early developing human brain in terms of tissue microstructure and white matter pathways using diffusion
MRI.
We propose three aims. In Aim 1, we will develop computational tools for effective estimation of white matter
pathways in the baby brain via diffusion tractography. We will tackle the challenge of tracking through regions
with low diffusion anisotropy owing to ongoing myelination in the developing brain. Our tools will allow proper
characterization of complex white matter pathway patterns such as fanning and bending. This will allow solving
the gyral bias problem ubiquitous in existing tractography algorithms with fiber streamlines terminating predomi-
nantly at gyral crowns but not sulcal banks. Our tools will allow tracing of cortico-cortical and cortico-subcortical
pathways with more uniform coverage of the cortex. In Aim 2, we will develop microstructural analysis meth-
ods that are unconfounded by complex fiber configurations, such as crossing, bending, branching, kissing, and
fanning, allowing more accurate and specific characterization of changes in tissue microarchitecture during early
brain development. In Aim 3, we will develop techniques that will allow diffusion MRI data collected at multiple
sites, which are very common in the era of big data, to be harmonized to mitigate the negative effects of inter-site
variability. Unlike existing methods that harmonize derived quantities such as fractional anisotropy, our method
can be applied directly to the diffusion-weighted images, allowing measurements based on microstructure and
connectivity to be subsequently computed for consistent analysis. We will also develop deep learning tools for
multi-shell data prediction so that diffusion MRI data collected with different numbers of shells can be harmonized.
Successful completion of this project will empower the neuroscience community with computational tools to better
chart the normative early development of the human brain using diffusion MRI. The developed tools will also
enable quantitative brain examinations of children who are affected by neurological developmental disorders.
计算扩散磁共振成像在人脑早期发育研究中的应用
摘要
在生命的最初几年,人脑在结构和功能上都是动态发展的。很多神经病患者-
在大脑早期的这一关键时期,视功能障碍与正常发育的异常有关。
发展。纵向婴儿MRI数据的可用性不断提高,例如通过Baby获取的数据
Connectome Project(BCP)为精确绘制早期大脑发育图提供了前所未有的机会
以了解正常和异常增长的轨迹。需要专用的计算工具来
准确处理和分析婴儿磁共振图像,这些图像通常显示出动态的异质变化
跨越时间。这个项目的目标是为大脑研究人员配备有效的研究计算工具
早期发育的人脑组织微结构和脑白质扩散途径
核磁共振检查。
我们提出了三个目标。在目标1中,我们将开发计算工具来有效地估计白质
通过弥散纤维束成像研究婴儿大脑中的通路。我们将应对跨区域跟踪的挑战
由于发育中的大脑正在进行髓鞘形成,扩散各向异性较低。我们的工具将允许适当的
表征复杂的白质通路模式,如扇形和弯曲。这将允许解决
在现有的fi-BER算法中普遍存在的回转偏差问题流水线终止优势.
只盯着旋转的王冠,不盯着凹陷的银行。我们的工具将允许追踪皮质-皮质和皮质下皮质
大脑皮层覆盖更均匀的通路。在目标2中,我们将开发微结构分析方法--
不会被复杂的fi和fi组合混淆的ods,例如交叉、弯曲、分枝、接吻和
Fning,允许更准确和特异地表征早期组织微结构的变化
大脑发育。在目标3中,我们将开发允许在多个地点收集的磁共振数据扩散的技术
大数据时代非常常见的站点,需要进行协调,以缓解站点间的负面影响
可变性。与现有的协调导出量(如分数各向异性)的方法不同,我们的方法
可以直接应用于扩散加权图像,允许基于微观结构和
连通性将在随后计算,以进行一致的分析。我们还将开发深度学习工具,用于
多贝壳数据预测,使得用不同贝壳数量采集的扩散磁共振数据能够得到协调。
该项目的成功完成将使神经科学界拥有更好的计算工具
使用弥散磁共振成像绘制人脑的标准早期发育图。开发的工具还将
能够对受神经发育障碍影响的儿童进行脑部定量检查。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Active Cortex Tractography.
- DOI:10.1007/978-3-030-87234-2_44
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:Wu, Ye;Hong, Yoonmi;Ahmad, Sahar;Yap, Pew-Thian
- 通讯作者:Yap, Pew-Thian
Longitudinal Prediction of Postnatal Brain Magnetic Resonance Images via a Metamorphic Generative Adversarial Network.
通过变形生成对抗网络对产后脑磁共振图像进行纵向预测。
- DOI:10.1016/j.patcog.2023.109715
- 发表时间:2023
- 期刊:
- 影响因子:8
- 作者:Huang,Yunzhi;Ahmad,Sahar;Han,Luyi;Wang,Shuai;Wu,Zhengwang;Lin,Weili;Li,Gang;Wang,Li;Yap,Pew-Thian
- 通讯作者:Yap,Pew-Thian
Harmonization of Multi-site Cortical Data Across the Human Lifespan.
人类一生中多部位皮质数据的协调。
- DOI:10.1007/978-3-031-21014-3_23
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Ahmad,Sahar;Nan,Fang;Wu,Ye;Wu,Zhengwang;Lin,Weili;Wang,Li;Li,Gang;Wu,Di;Yap,Pew-Thian
- 通讯作者:Yap,Pew-Thian
Hybrid Graph Transformer for Tissue Microstructure Estimation with Undersampled Diffusion MRI Data.
- DOI:10.1007/978-3-031-16431-6_11
- 发表时间:2022-09
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
From descriptive connectome to mechanistic connectome: Generative modeling in functional magnetic resonance imaging analysis.
- DOI:10.3389/fnhum.2022.940842
- 发表时间:2022
- 期刊:
- 影响因子:2.9
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pew-Thian Yap其他文献
Pew-Thian Yap的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pew-Thian Yap', 18)}}的其他基金
Computational Diffusion MRI for Studying Early Human Brain Development
用于研究人类早期大脑发育的计算扩散 MRI
- 批准号:
10442679 - 财政年份:2021
- 资助金额:
$ 37.22万 - 项目类别:
Computational Diffusion MRI for Studying Early Human Brain Development
用于研究人类早期大脑发育的计算扩散 MRI
- 批准号:
10317389 - 财政年份:2021
- 资助金额:
$ 37.22万 - 项目类别:
Robust White Matter Morphometry with Small Databases
具有小型数据库的强大白质形态测量
- 批准号:
9220858 - 财政年份:2016
- 资助金额:
$ 37.22万 - 项目类别:
Analyzing Large-Scale Neuroimaging Data in Alzheimer's Disease
分析阿尔茨海默病的大规模神经影像数据
- 批准号:
9240850 - 财政年份:2016
- 资助金额:
$ 37.22万 - 项目类别:
Robust White Matter Morphometry with Small Databases
具有小型数据库的强大白质形态测量
- 批准号:
9103347 - 财政年份:2016
- 资助金额:
$ 37.22万 - 项目类别:
Longitudinal Mapping of Human Brain Development in the First Years of Life
生命第一年人脑发育的纵向图谱
- 批准号:
10491702 - 财政年份:2009
- 资助金额:
$ 37.22万 - 项目类别:
Longitudinal Mapping of Human Brain Development in the First Years of Life
生命第一年人脑发育的纵向图谱
- 批准号:
10669749 - 财政年份:2009
- 资助金额:
$ 37.22万 - 项目类别:
Development of Robust Brain Measurement Tools Informed by Ultrahigh Field 7T MRI
开发基于超高场 7T MRI 的强大大脑测量工具
- 批准号:
9977173 - 财政年份:2008
- 资助金额:
$ 37.22万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 37.22万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 37.22万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 37.22万 - 项目类别:
Standard Grant
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 37.22万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 37.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 37.22万 - 项目类别:
Discovery Early Career Researcher Award
RUI: Evaluation of Neurotrophic-Like properties of Spaetzle-Toll Signaling in the Developing and Adult Cricket CNS
RUI:评估发育中和成年蟋蟀中枢神经系统中 Spaetzle-Toll 信号传导的神经营养样特性
- 批准号:
2230829 - 财政年份:2023
- 资助金额:
$ 37.22万 - 项目类别:
Standard Grant
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 37.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 37.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 37.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)