Longitudinal Mapping of Human Brain Development in the First Years of Life

生命第一年人脑发育的纵向图谱

基本信息

  • 批准号:
    10669749
  • 负责人:
  • 金额:
    $ 49.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-15 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Longitudinal Mapping of Human Brain Development in the First Years of Life Abstract This proposal requests continued funding support for research at the University of North Carolina at Chapel Hill to develop computational tools for quantifying longitudinal structural changes in the human brain. The previous project period has been extremely successful in advancing robust tools for longitudinal brain analysis of the aging brain. In this renewal, we seek to further advance robust computational tools for comprehensive longitudinal characterization of changes in the early developing brain. This is in line with our long-term goal of creating computational tools for longitudinal charting of brain evolution across the entire human lifespan. The tools to be developed in this project will allow unified and concurrent analysis of longitudinal volumetric data and cortical surfaces, facilitating the mapping of dynamic and spatially heterogeneous structural changes during a critical period of brain development. The tools developed in this project will be tailored to studying the human brain in the first few years of life, which undergoes dynamic development in both structure and function. We will utilize the MRI data made available via the Baby Connectome Project (BCP), involving 500 pediatric subjects scanned from birth to five years of age. The outcome of BCP will inform neuroscientists what normal healthy growth looks like and facilitate discovery of the earliest manifestations of brain disorders. To fully benefit from this unique dataset, dedicated computational tools are needed for accurate processing and analysis of baby MR images, which typically exhibit dynamic heteroge- neous changes across time. However, most computational tools developed to date have been mostly focused on adult subjects and are unreliable when applied to baby MRI. We propose to address this gap with three aims: In Aim 1, we will develop computational tools to allow multifaceted analysis of MRI data, including volumes and white-matter/pial surfaces, to be carried out in common spaces for a more holistic understanding of the early developing brain. Our tools will explicitly consider the rapid changes in MR image appearances that are typical in the first year of life. Unlike conventional methods that are designed for either image volumes or cortical surfaces, resulting in inconsistencies and loss of sensitivity to subtle changes, our tools will allow joint volume-surface analysis in consistent longitudinal spaces. Improving registration accuracy by drawing information from both entities is critical for detecting subtle changes in the developing brain, which is significantly smaller with a thinner cerebral cortex. In Aim 2, we will generate longitudinal, multimodal, and whole-brain parcellation maps for the early developing brain. Subdivision of the brain into coherent regions is an essential step in the macroscopic mapping of spa- tially heterogeneous changes and in the examination of spatial and topological organization. Our approach will allow the characterization of the evolution of parcellation across time and at the same time maintain temporal consistency and inter-subject correspondences of the parcels. In Aim 3, we will develop techniques that will allow prediction of missing MRI data to increase the usability of incomplete data for improving statistical power. Missing data is a common and inevitable problem in longitudinal studies due to subject dropouts or failed scans, especially in studies involving infants. To address this problem, we will develop deep learning techniques for longitudinal prediction of missing imaging data. Successful completion of this project will empower the neuroscience community with computational tools for more precise charting of the normative early development of the human brain using MRI. As part of this project, we will deliver the first set of temporally-dense surface-volumetric atlases that will capture key developmental traits and are therefore critical for quantification of possible deviation from normal brain development.
生命第一年人脑发育的纵向图谱 抽象的 该提案要求继续为北卡罗来纳大学教堂山分校的研究提供资金支持 开发用于量化人脑纵向结构变化的计算工具。上一个 项目期间在推进对衰老进行纵向大脑分析的强大工具方面取得了巨大成功 脑。在这次更新中,我们寻求进一步推进强大的计算工具,以实现全面的纵向研究 早期发育大脑变化的特征。这符合我们创建 用于纵向绘制整个人类生命周期中大脑进化的计算工具。需要的工具 该项目中开发的软件将允许对纵向体积数据和皮质数据进行统一和并发分析 表面,促进关键时期动态和空间异质结构变化的映射 大脑发育时期。 该项目开发的工具将专门用于研究人类生命最初几年的大脑, 在结构和功能上都经历着动态发展。我们将利用通过以下方式提供的 MRI 数据 婴儿连接组项目 (BCP),涉及 500 名儿科受试者,从出生到五岁进行扫描。这 BCP 的结果将告诉神经科学家正常的健康生长是什么样子,并有助于发现 脑部疾病的最早表现。为了充分受益于这个独特的数据集,专用的计算工具 需要对婴儿 MR 图像进行精确处理和分析,这些图像通常表现出动态异质性 随着时间的推移发生新的变化。然而,迄今为止开发的大多数计算工具主要集中在 成人受试者,应用于婴儿 MRI 时不可靠。我们建议通过三个目标来解决这一差距: 在目标 1 中,我们将开发计算工具来对 MRI 数据进行多方面分析,包括体积和 白质/软脑膜表面,将在公共空间进行,以便更全面地了解早期 正在发育的大脑。我们的工具将明确考虑 MR 图像外观的快速变化,这在 生命的第一年。与针对图像体积或皮质表面设计的传统方法不同, 导致不一致和对细微变化失去敏感性,我们的工具将允许联合体积表面 在一致的纵向空间中进行分析。通过提取两者的信息来提高配准精度 实体对于检测发育中大脑的细微变化至关重要,大脑越薄,体积就越小。 大脑皮层。 在目标 2 中,我们将为早期开发生成纵向、多模态和全脑分区图。 脑。将大脑细分为连贯的区域是宏观映射大脑空间的重要一步 本质上异质的变化以及空间和拓扑组织的检查。我们的方法将 允许描述分区随时间演变的特征,同时保持时间 地块的一致性和主体间对应关系。 在目标 3 中,我们将开发能够预测缺失 MRI 数据的技术,以提高 提高统计功效的不完整数据。缺失数据是纵向研究中常见且不可避免的问题 由于受试者退出或扫描失败而导致的研究,尤其是涉及婴儿的研究。为了解决这个问题, 我们将开发深度学习技术来纵向预测缺失的成像数据。 该项目的成功完成将为神经科学界提供更多计算工具 使用 MRI 精确绘制人类大脑早期规范发育的图表。作为该项目的一部分,我们将 提供第一套时间密集的表面体积图集,以捕获关键的发育特征 因此对于量化可能偏离正常大脑发育的情况至关重要。

项目成果

期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reveal Consistent Spatial-Temporal Patterns from Dynamic Functional Connectivity for Autism Spectrum Disorder Identification.
从自闭症谱系障碍鉴定的动态功能连通性中揭示了一致的时空模式。
7T-Guided Learning Framework for Improving the Segmentation of 3T MR Images.
用于改进 3T MR 图像分割的 7T 引导学习框架。
Difficulty-aware hierarchical convolutional neural networks for deformable registration of brain MR images.
  • DOI:
    10.1016/j.media.2020.101817
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    10.9
  • 作者:
    Huang Y;Ahmad S;Fan J;Shen D;Yap PT
  • 通讯作者:
    Yap PT
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pew-Thian Yap其他文献

Pew-Thian Yap的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pew-Thian Yap', 18)}}的其他基金

Computational Diffusion MRI for Studying Early Human Brain Development
用于研究人类早期大脑发育的计算扩散 MRI
  • 批准号:
    10442679
  • 财政年份:
    2021
  • 资助金额:
    $ 49.02万
  • 项目类别:
Computational Diffusion MRI for Studying Early Human Brain Development
用于研究人类早期大脑发育的计算扩散 MRI
  • 批准号:
    10317389
  • 财政年份:
    2021
  • 资助金额:
    $ 49.02万
  • 项目类别:
Computational Diffusion MRI for Studying Early Human Brain Development
用于研究人类早期大脑发育的计算扩散 MRI
  • 批准号:
    10643981
  • 财政年份:
    2021
  • 资助金额:
    $ 49.02万
  • 项目类别:
Robust White Matter Morphometry with Small Databases
具有小型数据库的强大白质形态测量
  • 批准号:
    9220858
  • 财政年份:
    2016
  • 资助金额:
    $ 49.02万
  • 项目类别:
Analyzing Large-Scale Neuroimaging Data in Alzheimer's Disease
分析阿尔茨海默病的大规模神经影像数据
  • 批准号:
    9240850
  • 财政年份:
    2016
  • 资助金额:
    $ 49.02万
  • 项目类别:
Robust White Matter Morphometry with Small Databases
具有小型数据库的强大白质形态测量
  • 批准号:
    9103347
  • 财政年份:
    2016
  • 资助金额:
    $ 49.02万
  • 项目类别:
Longitudinal Mapping of Human Brain Development in the First Years of Life
生命第一年人脑发育的纵向图谱
  • 批准号:
    10491702
  • 财政年份:
    2009
  • 资助金额:
    $ 49.02万
  • 项目类别:
Development of Robust Brain Measurement Tools Informed by Ultrahigh Field 7T MRI
开发基于超高场 7T MRI 的强大大脑测量工具
  • 批准号:
    9977173
  • 财政年份:
    2008
  • 资助金额:
    $ 49.02万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 49.02万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.02万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 49.02万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.02万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 49.02万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 49.02万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.02万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 49.02万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 49.02万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.02万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了