Metasurface enhanced and machine learning aided spectrochemical liquid biopsy
超表面增强和机器学习辅助光谱化学液体活检
基本信息
- 批准号:10647397
- 负责人:
- 金额:$ 22.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressBenignBiological MarkersBiophotonicsBlood TestsCancer BiologyCancer ControlCancer DetectionCancer DiagnosticsCancer PatientChemicalsClinicalClinical ManagementComplexCoupledDataDetectionDevicesDiagnosisDiagnosticDiscriminationDiscrimination LearningDiseaseEarly DiagnosisElectromagneticsEngineeringEquityFemaleFingerprintFunctional disorderFundingFutureGoalsGrantHealthImageImaging technologyLabelLasersLightLipidsMachine LearningMalignant NeoplasmsMalignant neoplasm of ovaryMeasurementMedicalMethodsModalityModelingMolecularNon-Invasive Cancer DetectionNon-Invasive DetectionNucleic AcidsOpticsOutcomePathologicPatient MonitoringPatientsPatternPelvisPerformancePeritoneal FluidPhysiologicalPopulationPopulation GroupPopulation HeterogeneityPostmenopauseProteinsProtocols documentationRaman Spectrum AnalysisRecommendationResearchResearch PersonnelRetrievalSamplingScreening for cancerSerumSignal TransductionSocioeconomic FactorsSpectrometrySpectrum AnalysisSurvival RateSymptomsSystemTechniquesTechnologyTemperatureTestingTissuesUnited States National Institutes of HealthValidationabsorptionadvanced analyticsburden of illnesscancer health disparitycancer riskcancer typechemical fingerprintingcohortcostcost effectivedata analysis pipelinedesigndetection platformdiagnostic biomarkerimaging approachimprovedinfrared spectroscopyinnovationinstrumentationliquid biopsymachine learning methodmachine learning modelmanufacturemid infrared spectrometrymortalitymultiple omicsnanonanophotonicnovelnovel diagnosticsphotonicsplasmonicsportabilitypreclinical studyquantumreal world applicationscreeningscreening programspectrographsurvival outcometool
项目摘要
PROJECT SUMMARY
Liquid biopsy modalities that can non-invasively detect disease-associated biomarkers from biofluids can enable
early cancer detection and patient monitoring with implications for improved survival rates. However, current
methods have not achieved critical sensitivity and accuracy to be approved for population screening programs.
New spectrochemical liquid biopsy methods, such as Raman and infrared spectroscopy, coupled with machine
learning models are emerging as next-generation diagnostic modalities. Yet, fundamental physical limitations of
light-matter interactions using conventional optical setups hinder the analytical performance of molecular
spectroscopy techniques. Here, we propose to employ novel electromagnetic metasurfaces that can advance
the analytical sensitivity and chemical selectivity of infrared absorption spectroscopy enabling its real-world
applications in the biomedical field. Moreover, our innovative laser-based spectral imaging approach can achieve
on-chip spectrometer-less chemical fingerprint retrieval eliminating clinically incompatible, complex, and bulky
instrumentation requirements.
The long-term goal of this project is to develop a rapid, label-free, portable, and non-invasive cancer detection
platform based on sensitive and accurate chemometric liquid biopsy and machine learning-aided discrimination
modalities. The overall objectives in this application are to (i) determine a potent metasurface design that can
robustly extract chemical fingerprint information from a complex biosample matrix, (ii) identify optimized design
parameters for spectral imaging-based on-chip fingerprint retrieval (iii) establish measurement protocols and
data processing pipeline (iv) identify a machine learning model by which sensitive and accurate sample
discrimination can be achieved. In the short term, we will pursue two specific aims: 1) develop novel engineered
metasurfaces for sensitive and specific spectrochemical biofluid analysis and demonstrate spectrometer-less
on-chip chemical fingerprinting 2) Test and validate the platform using biofluids from an ovarian cancer patient
cohort and non-cancer controls. Our proposed approach is innovative because it catalyzes the state-of-the-art
laser-based infrared spectral imaging technology with powerful nanophotonic tools to enable its impact in
biomedical diagnostics and address an unmet medical need. In addition, the proposed interdisciplinary project
is significant because it is expected to develop a non-invasive and accessible health screening platform that can
ultimately impact the clinical management of cancer and the survival outcomes equitably among diverse
populations.
项目摘要
可以从生物流体中非侵入性地检测疾病相关生物标志物的液体活检模式可以使
早期癌症检测和患者监测,对提高生存率有意义。但目前的
这些方法还没有达到临界灵敏度和准确度,不能被批准用于人群筛查项目。
新的光谱化学液体活检方法,如拉曼和红外光谱,结合机器
学习模型正在作为下一代诊断模式出现。然而,基本的物理限制
使用常规光学装置的光-物质相互作用阻碍了分子的分析性能,
光谱技术。在这里,我们建议采用新的电磁超表面,
红外吸收光谱的分析灵敏度和化学选择性使其能够在现实世界中
在生物医学领域的应用。此外,我们创新的基于激光的光谱成像方法可以实现
片上无光谱仪化学指纹检索,消除了临床上不兼容、复杂和庞大的问题
仪表要求。
这个项目的长期目标是开发一种快速、无标签、便携、无创的癌症检测
基于灵敏准确的化学计量液体活检和机器学习辅助鉴别的平台
方式。本申请的总体目标是(i)确定一种有效的元表面设计,
从复杂生物样品基质中稳健地提取化学指纹信息,(ii)识别优化设计
用于基于光谱成像的芯片上指纹检索的参数(iii)建立测量协议,
数据处理流水线(iv)识别机器学习模型,通过该模型敏感且准确地采样
可以实现歧视。在短期内,我们将追求两个具体目标:1)开发新的工程
用于灵敏度和特异性光谱化学生物流体分析的超颖表面,
2)使用来自卵巢癌患者的生物流体测试和验证平台
队列和非癌症对照。我们提出的方法是创新的,因为它催化了最先进的
基于激光的红外光谱成像技术与强大的纳米光子工具,使其在
生物医学诊断和解决未满足的医疗需求。此外,拟议的跨学科项目
意义重大,因为它有望开发一个非侵入性和可访问的健康筛查平台,
最终公平地影响癌症的临床管理和不同人群的生存结果
人口。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Filiz Yesilkoy其他文献
Filiz Yesilkoy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Genome analysis-based prediction model development for response to stereotactic radiosurgery in benign brain tumors
基于基因组分析的预测模型开发,用于良性脑肿瘤立体定向放射外科治疗的反应
- 批准号:
23K08495 - 财政年份:2023
- 资助金额:
$ 22.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Clinical breast cancer risk prediction models for women with a high-risk benign breast diagnosis
高风险良性乳腺诊断女性的临床乳腺癌风险预测模型
- 批准号:
10719777 - 财政年份:2023
- 资助金额:
$ 22.33万 - 项目类别:
Environmentally Benign Precise Transformations of Alkenes by Chiral Chalcogenide Catalysts
手性硫属化物催化剂对环境无害的烯烃精确转化
- 批准号:
22KJ2498 - 财政年份:2023
- 资助金额:
$ 22.33万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Learners to LeAders in benign Urology, benign Nephrology, and non-Cancer Hematology
良性泌尿外科、良性肾脏病学和非癌症血液学领域的学习者和领导者
- 批准号:
10726042 - 财政年份:2023
- 资助金额:
$ 22.33万 - 项目类别:
The role of estrogen receptor alpha in prostatic fibrosis contributing to benign prostatic hyperplasia
雌激素受体α在导致良性前列腺增生的前列腺纤维化中的作用
- 批准号:
10607151 - 财政年份:2023
- 资助金额:
$ 22.33万 - 项目类别:
Development of a medical device to resolve benign esophageal stricture by heating and traction
开发通过加热和牵引解决良性食管狭窄的医疗设备
- 批准号:
23H03765 - 财政年份:2023
- 资助金额:
$ 22.33万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of benign/malignant differentiation method for thyroid follicular tumor using organoids
利用类器官开发甲状腺滤泡性肿瘤良恶性鉴别方法
- 批准号:
23K08075 - 财政年份:2023
- 资助金额:
$ 22.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mechanisms of p53 Engagement and Action at the Benign-to-Malignant Transition in Sporadic Tumorigenesis
p53在散发性肿瘤发生良性向恶性转变中的参与和作用机制
- 批准号:
10720034 - 财政年份:2023
- 资助金额:
$ 22.33万 - 项目类别:
I-Corps: Mitigating Multidrug Resistant Bacterial Infections with Biocompatible and Environmentally Benign Nanoantibiotics
I-Corps:利用生物相容性且对环境无害的纳米抗生素减轻多重耐药细菌感染
- 批准号:
2306943 - 财政年份:2023
- 资助金额:
$ 22.33万 - 项目类别:
Standard Grant
Identifying the role of the gut microbiome in the etiology of benign breast disease
确定肠道微生物组在良性乳腺疾病病因学中的作用
- 批准号:
10359959 - 财政年份:2022
- 资助金额:
$ 22.33万 - 项目类别: