Using Wearable Technology to Assess Recovery and Detect Post-Operative Complications Following Cardiothoracic Surgery

使用可穿戴技术评估心胸外科手术的恢复情况并检测术后并发症

基本信息

  • 批准号:
    10646328
  • 负责人:
  • 金额:
    $ 73.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

Project Summary. Every year, more than 500,000 patients undergo operations for heart and lung disease. After surgery, patients often experience pain, fatigue, and disturbed sleep that can persist for weeks to months. In addition, up to 32% of patients develop postoperative complications, which often occur after discharge from the hospital and may lead to readmission. Complications are costly and can be deadly; they are associated with a 200-300% increase in healthcare costs and a 6-fold increase in 90-day postoperative mortality. Currently, after surgery, when a patient is discharged from the hospital, the patient and their family members are responsible for monitoring the patient’s health status. Patients are usually not seen by a doctor for 2-4 weeks after discharge. Attempts to improve postoperative monitoring include home health visits and telemedicine approaches. However, these methods have been shown to be ineffective, costly, and allow for only vague and intermittent assessments of recovery. They do not detect complications until they are at a more severe stage. As such, accurate, easy-to-implement and inexpensive methods to assess postoperative recovery and to detect complications at their earliest stage—before symptom onset—are urgently needed. We previously showed that machine learning analysis of biometrics collected by wearables could detect Lyme Disease and Covid-19. We then, in a pilot study, applied our algorithm, previously developed to identify Covid- 19, to patients undergoing thoracic surgery and showed that this algorithm could detect 89% of complications a median of 3 days before symptom onset. When we evaluated the postoperative recovery of cardiothoracic patients, we showed that machine learning analysis of biometrics could classify patients into distinct recovery groups. Thus, wearables and machine learning algorithms could lead to a highly accurate and accessible method to predict complications early and improve assessments of recovery. Our overall objective is to optimize and validate our machine learning algorithm—previously developed for the early detection of Covid-19—for the detection of postoperative complications prior to symptom onset and to use machine learning analysis to predict the quality of a patient’s recovery using pre- and intraoperative data. Our project aims to first use wearables to collect high-resolution physiologic data of cardiothoracic surgical patients. We will then extend our previously developed algorithm for early detection of postoperative complications and develop an algorithm to predict the quality of a patient’s postoperative recovery. The proposed project will develop an innovative method to detect postoperative complications prior to symptom onset and predict the quality of a patient’s postoperative recovery using pre- and intraoperative data. Importantly, our proposed method could be scaled to not only improve outcomes for cardiothoracic surgical patients, but for patients undergoing other types of surgery. The results of this study will enable a future randomized trial that evaluates whether real-time postoperative monitoring with machine learning algorithms and wearables can lead to 1) earlier detection of complications, 2) earlier outpatient interventions that improve recovery and/or reduce severity of complications, and 3) decreases in unplanned hospital readmissions.
项目摘要。每年有50多万患者接受心脏和肺部疾病手术。 手术后,患者通常会经历疼痛,疲劳和睡眠障碍,这些症状可能持续数周至数月。 此外,高达32%的患者发生术后并发症,通常发生在出院后。 医院,并可能导致再入院。并发症是昂贵的,可能是致命的;它们与 医疗费用增加200-300%,术后90天死亡率增加6倍。 目前,手术后,患者出院时,患者及其家属 负责监测患者的健康状况。患者通常在2-4天内不会被医生看到 出院后几周。改善术后监测的尝试包括家庭健康访视, 远程医疗方法。然而,这些方法已被证明是无效的,昂贵的,并允许 只有模糊和间歇性的恢复评估。他们不会发现并发症,直到他们在一个 更严重的阶段。因此,准确,易于实施和廉价的方法来评估术后 在症状发作之前的最早阶段,即恢复和检测并发症是迫切需要的。 我们之前曾表明,对可穿戴设备收集的生物识别信息进行机器学习分析可以检测到莱姆病 疾病和COVID-19。然后,在一项试点研究中,我们应用了我们之前开发的识别新冠病毒的算法, 19,接受胸外科手术的患者,并表明该算法可以检测89%的并发症, 症状发作前3天的中位数。当我们评估心胸外科手术后的恢复情况时, 患者,我们表明生物识别的机器学习分析可以将患者分类为不同的恢复 组因此,可穿戴设备和机器学习算法可以实现高度准确和可访问的 早期预测并发症和改善恢复评估的方法。 我们的总体目标是优化和验证我们的机器学习算法-以前为 COVID-19的早期检测-用于在症状发作前检测术后并发症, 使用机器学习分析,通过术前和术中数据预测患者的恢复质量。 我们的项目旨在首次使用可穿戴设备收集心胸外科手术的高分辨率生理数据, 患者然后,我们将扩展我们以前开发的算法,用于术后早期检测。 并发症,并开发一种算法来预测患者术后恢复的质量。 拟议的项目将开发一种创新的方法,以检测术后并发症之前, 使用术前和术中数据预测患者术后恢复的质量。 重要的是,我们提出的方法不仅可以改善心胸外科手术的结果, 患者,但对于接受其他类型手术的患者。这项研究的结果将使未来 一项随机试验,评估是否使用机器学习算法进行实时术后监测 可穿戴设备可以导致1)更早地检测并发症,2)更早的门诊干预, 恢复和/或降低并发症的严重程度,以及3)减少计划外的再入院。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Pilot Study Using Machine Learning Algorithms and Wearable Technology for the Early Detection of Postoperative Complications After Cardiothoracic Surgery.
使用机器学习算法和可穿戴技术早期检测心胸外科术后并发症的试点研究。
  • DOI:
    10.1097/sla.0000000000006263
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    9
  • 作者:
    Beqari,Jorind;Powell,Joseph;Hurd,Jacob;Potter,AlexandraL;McCarthy,Meghan;Srinivasan,Deepti;Wang,Danny;Cranor,James;Zhang,Lizi;Webster,Kyle;Kim,Joshua;Rosenstein,Allison;Zheng,Zeyuan;Lin,TungHo;Li,Jing;Fang,Zhengyu;Zhang,
  • 通讯作者:
    Zhang,
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiao Li其他文献

Xiao Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiao Li', 18)}}的其他基金

Using Wearable Technology to Assess Recovery and Detect Post-Operative Complications Following Cardiothoracic Surgery
使用可穿戴技术评估心胸外科手术的恢复情况并检测术后并发症
  • 批准号:
    10522199
  • 财政年份:
    2022
  • 资助金额:
    $ 73.14万
  • 项目类别:

相似海外基金

Collaborative Research: OPUS: Permutational Biometry: Synthesizing the Analytics of Data Analysis in Ecology and Evolution
合作研究:OPUS:排列生物测定:综合生态学和进化中的数据分析
  • 批准号:
    2146220
  • 财政年份:
    2022
  • 资助金额:
    $ 73.14万
  • 项目类别:
    Standard Grant
Collaborative research: OPUS: Permutational Biometry: Synthesizing the Analytics of Data Analysis in Ecology and Evolution
合作研究:OPUS:排列生物测定:综合生态学和进化中的数据分析
  • 批准号:
    2140720
  • 财政年份:
    2022
  • 资助金额:
    $ 73.14万
  • 项目类别:
    Standard Grant
An optical biometry approach for vision screening in preschool children
用于学龄前儿童视力筛查的光学生物测量方法
  • 批准号:
    17K13249
  • 财政年份:
    2017
  • 资助金额:
    $ 73.14万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Whole Eye Biometry System
全眼生物测量系统
  • 批准号:
    9274928
  • 财政年份:
    2015
  • 资助金额:
    $ 73.14万
  • 项目类别:
High-resolution biometry and morphometric characterization of calcareous nannofossils during the Oceanic Anoxic Events 1a and 1d in a global context
全球背景下海洋缺氧事件 1a 和 1d 期间钙质超微化石的高分辨率生物测量和形态特征
  • 批准号:
    241525448
  • 财政年份:
    2013
  • 资助金额:
    $ 73.14万
  • 项目类别:
    Infrastructure Priority Programmes
BIOMETRY CORE
生物测定核心
  • 批准号:
    8360347
  • 财政年份:
    2011
  • 资助金额:
    $ 73.14万
  • 项目类别:
BIOMETRY CORE FACILITY
生物测定核心设施
  • 批准号:
    8167869
  • 财政年份:
    2010
  • 资助金额:
    $ 73.14万
  • 项目类别:
Biometry
生物测定
  • 批准号:
    7944581
  • 财政年份:
    2009
  • 资助金额:
    $ 73.14万
  • 项目类别:
BIOMETRY CORE FACILITY
生物测定核心设施
  • 批准号:
    7959758
  • 财政年份:
    2009
  • 资助金额:
    $ 73.14万
  • 项目类别:
Biometry and Microarray Core
生物测定和微阵列核心
  • 批准号:
    7659698
  • 财政年份:
    2008
  • 资助金额:
    $ 73.14万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了