TRD2: Interferometric Near Infrared Spectroscopy (iNIRS)
TRD2:干涉近红外光谱 (iNIRS)
基本信息
- 批准号:10649467
- 负责人:
- 金额:$ 18.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-20 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AbdomenAddressAdoptionAdultAreaBenignBiochemicalBiophotonicsBloodBlood PressureBlood flowBrainBrain imagingCaringCerebrovascular CirculationClinicalCollaborationsCompensationCritical CareDelivery RoomsDemocracyDetectionDevelopmentDevice or Instrument DevelopmentDevicesDiffuseDiffusionDiscipline of obstetricsFetal MonitoringFiberFlowmetryHemoglobinImageInfrared RaysInterferometryInterventionLasersLightLinkMagnetic Resonance ImagingMeasurementMeasuresMedicineMetabolicMetabolismMethodsMicrosurgeryModalityMonitorMorphologic artifactsMotionNear-Infrared SpectroscopyNeurosciencesNoiseOperative Surgical ProceduresOptical Coherence TomographyOpticsPerformancePerfusionPerinatalPhotonsPhysicsPhysiologicalPhysiologyPopulationPositioning AttributePropertyRandomizedReconstructive Surgical ProceduresResolutionScalp structureScanningSemiconductorsServicesSiteSourceSpecificitySpectrum AnalysisStandardizationStrokeSystemTechnologyTimeTissuesTraumatic Brain Injuryanalytical methodblood flow measurementbrain computer interfacecerebrovascularclinical applicationcostcraniumdata streamsdensitydetectorexperienceheart rate monitorhemodynamicsimaging approachimaging modalityimaging platformimprovedindexinginnovationinstrumentationinventionlight scatteringmetal oxidemillimetermultimodalitynon-invasive monitornon-invasive optical imagingnovel strategiesparallelizationpoint of carepreventscreeningsensorskill acquisitionskillssynergismtechnology research and developmenttissue oxygenation
项目摘要
PROJECT SUMMARY – Technology Research and Development Project #2
The field of diffuse optical spectroscopy (DOS) has long held the promise of non-invasive, deep tissue monitoring
with benign, near-infrared light. Yet clinical DOS instrumentation has been challenged by limited quantitative
accuracy, lack of depth specificity, and the inherent ambiguity of hemoglobin oxygenation measures. These
challenges have been only partially, and inadequately, addressed by existing technologies. Our team at UC
Davis recently invented interferometric diffuse optical spectroscopy (iDOS), which overcomes many of these
critical roadblocks. In this TRD, we will advance and disseminate two complementary iDOS technologies:
1) Interferometric Diffusing Wave Spectroscopy (iDWS) uses low-cost complementary metal–oxide–
semiconductor (CMOS) sensors to create a new class of near-infrared optical devices that measure deep
blood flow (BF) index continuously and non-invasively. Employing the optical “trick” of interferometry,
iDWS transforms each CMOS pixel into a sensitive detector for coherent light fluctuations that encode
deep BF dynamics. Since CMOS camera pixels are cheap and numerous, iDWS improves the
performance and reduces the cost of optical BF measurements. Here, we will develop and validate a
transformative, multi-exposure iDWS approach, to enable brain and other deep tissue measurements
in adult humans with mass-produced, 2D megapixel sensors. While the interferometric approach is
established, the multi-exposure approach is new and high impact, enabling a further two order-of-
magnitude improvement in performance-to-cost over iDWS. These advances will democratize access
to cerebral BF (CBF), leading to 1) better brain-computer interfaces 2) point-of-care assessments of CBF,
and 3) wearable CBF monitors, analogous to blood pressure and heart rate monitors.
2) Interferometric Near-Infrared Spectroscopy (iNIRS) enhances quantitative capabilities of iDOS through
laser tuning. Critically, iNIRS measures the time-of-flight (TOF) of light with tens of picosecond resolution,
enabling direct quantification of optical properties. Additionally, by measuring coherent light fluctuations,
iNIRS quantifies blood flow index, with the additional ability to resolve dynamics in depth (e.g. scalp-skull-
brain). In this proposal, besides using iNIRS as a quantitative adjunct to conventional continuous wave
methods, we will further improve the TOF resolution of iNIRS by an order of magnitude, while
achieving spectroscopic (multi-wavelength) capabilities. We will also provide detection of sub-diffuse
light at null source-collector separation, enabling integration of iNIRS and fiber-based mesoscopic
approaches such as iFLIM (TRD 1) and Optical Coherence Tomography (OCT).
Collaborative and service projects are selected to represent settings ranging from microsurgery to non-invasive
monitoring, and applications from clinical neuro-monitoring to surgical skill assessment to population screening.
These diverse collaborations will help to evaluate and demonstrate the unique capabilities of the iDOS approach.
项目总结-技术研究和开发项目#2
漫反射光谱学(DOS)领域长期以来一直被认为是无创的、深层组织监测的希望所在
使用良性的近红外光。然而,临床DOS器械受到了有限的量化的挑战
血红蛋白氧合测量的准确性、缺乏深度特异性和固有的模糊性。这些
现有技术只是部分地、不充分地解决了挑战。我们加州大学的团队
戴维斯最近发明了干涉漫反射光谱学(IDOS),它克服了其中的许多缺点
关键的路障。在这项技术研究中,我们将推进和推广两项相辅相成的iDOS技术:
1)干涉漫反射波谱(IDWS)使用低成本的互补金属氧化物-
半导体(CMOS)传感器创造了一种新的近红外光学设备,可以测量深度
血流(BF)指标连续、无创。利用干涉测量的光学“技巧”,
IDWS将每个cmos像素转换为对相干光波动敏感的探测器,该探测器编码
深厚的高炉动力。由于cmos摄像头像素便宜且数量众多,iDWS改进了
并降低了光学高炉测量的成本。在这里,我们将开发和验证
变革性的多次曝光iDWS方法,可实现脑和其他深层组织的测量
在拥有大规模生产的2D百万像素传感器的成年人身上。而干涉测量方法是
已建立的多重曝光方法是新的和高影响的,使进一步的两个顺序-
与iDWS相比,性价比大幅提升。这些进展将使访问变得民主化
到大脑BF(CBF),导致1)更好的脑机接口2)CBF的护理点评估,
3)可穿戴式脑血流监测仪,类似于血压和心率监测仪。
2)干涉近红外光谱(INIRS)通过以下方式增强了iDOS的定量能力
激光调谐。关键的是,iNIRS以几十皮秒的分辨率测量光的飞行时间(TOF),
使得能够直接量化光学属性。此外,通过测量相干光波动,
INIRS将血流指数量化,并具有额外的深度动力学解析能力(例如,头皮-头骨-头皮-头骨-头皮-头盖骨-头皮-头骨-头皮-头盖骨-头皮-头皮-头盖骨-头皮-头皮-头骨-
大脑)。在这一方案中,除了使用iNIR作为常规连续波的定量补充外,
方法,我们将进一步提高iNIRS的飞行时间分辨率一个数量级,而
实现光谱(多波长)能力。我们还将提供亚漫反射检测
零光源-收集器分离的光,实现了iNIR和光纤介观的集成
方法如iFLIM(TRD1)和光学相干层析成像(OCT)。
选择协作和服务项目来代表从显微手术到非侵入性的各种环境
监测,以及从临床神经监测到外科技能评估到人群筛查的应用。
这些多样化的合作将有助于评估和展示iDOS方法的独特能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vivek Jay Srinivasan其他文献
Vivek Jay Srinivasan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vivek Jay Srinivasan', 18)}}的其他基金
TRD2: Interferometric Near Infrared Spectroscopy (iNIRS)
TRD2:干涉近红外光谱 (iNIRS)
- 批准号:
10424948 - 财政年份:2022
- 资助金额:
$ 18.34万 - 项目类别:
Imaging Neuronal and Capillary Dysfunction Deep in the Rodent Brain in vivo Using 1700 NM Optical Coherence Microscopy and Tracer-Based Kinetics
使用 1700 NM 光学相干显微镜和基于示踪剂的动力学对啮齿动物大脑深处的神经元和毛细血管功能障碍进行体内成像
- 批准号:
10374266 - 财政年份:2021
- 资助金额:
$ 18.34万 - 项目类别:
Human Brain Interferometers for Better Blood Flow Monitoring
人脑干涉仪可更好地监测血流
- 批准号:
10392516 - 财政年份:2021
- 资助金额:
$ 18.34万 - 项目类别:
Human Brain Interferometers for Better Blood Flow Monitoring
人脑干涉仪可更好地监测血流
- 批准号:
10359454 - 财政年份:2021
- 资助金额:
$ 18.34万 - 项目类别:
Human Brain Interferometers for Better Blood Flow Monitoring
人脑干涉仪可更好地监测血流
- 批准号:
10541218 - 财政年份:2021
- 资助金额:
$ 18.34万 - 项目类别:
True Sub-Micron Ocular Diagnostics with Visible Light Optical Coherence Tomography
使用可见光光学相干断层扫描进行真正的亚微米眼部诊断
- 批准号:
10426649 - 财政年份:2020
- 资助金额:
$ 18.34万 - 项目类别:
True Sub-Micron Ocular Diagnostics with Visible Light Optical Coherence Tomography
使用可见光光学相干断层扫描进行真正的亚微米眼部诊断
- 批准号:
10676879 - 财政年份:2020
- 资助金额:
$ 18.34万 - 项目类别:
True Sub-Micron Ocular Diagnostics with Visible Light Optical Coherence Tomography
使用可见光光学相干断层扫描进行真正的亚微米眼部诊断
- 批准号:
10058787 - 财政年份:2020
- 资助金额:
$ 18.34万 - 项目类别:
True Sub-Micron Ocular Diagnostics with Visible Light Optical Coherence Tomography
使用可见光光学相干断层扫描进行真正的亚微米眼部诊断
- 批准号:
10212395 - 财政年份:2020
- 资助金额:
$ 18.34万 - 项目类别:
Imaging neuronal and capillary dysfunction deep in the rodent brain in vivo using 1700 nm Optical Coherence Microscopy and tracer-based kinetics
使用 1700 nm 光学相干显微镜和基于示踪剂的动力学对啮齿动物大脑深处的神经元和毛细血管功能障碍进行体内成像
- 批准号:
9343056 - 财政年份:2015
- 资助金额:
$ 18.34万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 18.34万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 18.34万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 18.34万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 18.34万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 18.34万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 18.34万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 18.34万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 18.34万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 18.34万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 18.34万 - 项目类别:
Research Grant