Establishment of the Uterine-Placental Interface
子宫胎盘界面的建立
基本信息
- 批准号:10650365
- 负责人:
- 金额:$ 3.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-09 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressBiologicalBlood flowCell Differentiation processCell LineageCell ProliferationCellsCommunicationCritical ThinkingCyclin-Dependent Kinase InhibitorDeciduaDevelopmentDiagnosticDiseaseEnvironmentEventExhibitsFailureFetal GrowthFetal Growth RetardationFetusGenesGoalsHealthHemochorial Placental DevelopmentHumanIn VitroInvadedKansasLaboratoriesMedical centerMedicineMentorsModelingMolecularMothersMusNutrientOxygenPathogenesisPathologyPerinatalPhysiologicalPhysiologyPlacentaPlacentationPre-EclampsiaPregnancyPregnancy ComplicationsPremature BirthProcessRattusRegulationReproductionResearchResearch ProposalsRodentRoleSiteSpiral Artery of the EndometriumSystemTherapeutic InterventionTissuesTrainingTranscriptUniversitiesUterusVillousbiomedical scientistcandidate identificationcell transformationearly pregnancy lossexperimental studygenome editingin vivoinsightloss of functionmutantobstetrical complicationpregnancy disordershear stresssingle-cell RNA sequencingskillsstem cell differentiationtranscriptomicstrophoblasttrophoblast stem cell
项目摘要
As pregnancy progresses, the oxygen and nutrient needs of the growing fetus increase. To accommodate these needs, adaptations occur at the uterine-placental interface. Early in pregnancy, trophoblast stem (TS) cells differentiate and invade into the uterine tissue to facilitate remodeling of uterine spiral arteries. Abnormal placenta development with insufficient trophoblast invasion leads to pregnancy disorders including early pregnancy loss, preeclampsia, intrauterine growth restriction, and pre-term birth. The failure of invasive trophoblast cell transformation of the uterus and especially the uterine vasculature is the causative event leading to these devastating obstetrical complications. However, we know little about the mechanisms underlying development of the invasive trophoblast cell lineage. The underlying premise of our research approach is that conservation exists in the regulation of placentation. We utilize the rat as a model because unlike other species, including the mouse, the rat exhibits deep intrauterine trophoblast cell invasion similar to the human. Human TS cells have recently been isolated and propagated in vitro and can be manipulated to differentiate into invasive trophoblast, which in the human are referred to as extravillous trophoblast (EVT) cells. Human TS cells are an excellent model for investigating molecular mechanisms regulating trophoblast cell differentiation. Our long-range goal is to identify conserved regulators controlling differentiation of the invasive trophoblast cell lineage. In a preliminary study, we used single-cell RNA sequencing (scRNA-seq) of the rat uterine-placental interface to identify candidate regulators of the invasive trophoblast cell lineage. We identified cyclin dependent kinase inhibitor 1C (CDKN1C) as a conserved transcript uniquely expressed in invasive trophoblast cells of the rat and human. CDKN1C is a key regulator of cell proliferation, endoreduplication, and differentiation in several developmental systems. In Aim 1, a loss-of-function approach will be used to investigate the involvement of CDKN1C in human TS cell differentiation into the invasive EVT cell lineage. We will examine structural, transcriptomic, and functional processes impacted by CDKN1C. In Aim 2, we utilize a loss-of-function rat model to examine the role of CDKN1C in the physiological context of placentation. This project will be completed at the University of Kansas Medical Center (KUMC) under the guidance of Dr. Michael J Soares and a mentoring team of outstanding biomedical scientists. A training plan has been formulated to facilitate the development of technical proficiencies and critical thinking skills necessary to devise and execute experimentation that effectively addresses a meaningful biological question. The Soares Laboratory, the Institute for Reproduction and Perinatal Research, and the Department of Pathology and Laboratory Medicine at KUMC represent a rich scientific environment that will provide outstanding graduate training and a research opportunity to gain new insights into the regulation of the invasive trophoblast cell lineage and the establishment of the uterine-placental interface.
随着怀孕的进展,胎儿生长的氧气和营养需求增加。为了适应这些需要,适应发生在子宫-胎盘界面。妊娠早期,滋养层干细胞(TS)分化并侵入子宫组织,促进子宫螺旋动脉重塑。胎盘发育异常伴滋养层细胞浸润不足导致妊娠障碍,包括早孕丢失、先兆子痫、宫内生长受限和早产。子宫,尤其是子宫脉管系统的侵袭性滋养层细胞转化的失败是导致这些毁灭性产科并发症的原因。然而,我们知道很少的机制,潜在的发展的侵袭性滋养层细胞谱系。我们的研究方法的基本前提是,保护存在于胎盘的调节。我们使用大鼠作为模型,因为与其他物种(包括小鼠)不同,大鼠表现出与人类相似的子宫内滋养层细胞浸润深度。人TS细胞最近已被分离并在体外增殖,并且可以被操纵以分化成侵入性滋养层,其在人体中被称为绒毛外滋养层(EVT)细胞。人TS细胞是研究滋养层细胞分化调控分子机制的极好模型。我们的长期目标是确定保守的调节控制分化的侵袭性滋养层细胞谱系。在一项初步研究中,我们使用大鼠子宫-胎盘界面的单细胞RNA测序(scRNA-seq)来鉴定侵袭性滋养层细胞谱系的候选调节因子。我们确定细胞周期蛋白依赖性激酶抑制剂1C(CDKN 1C)作为一个保守的转录本,唯一表达于大鼠和人类的侵袭性滋养层细胞。CDKN 1C是几种发育系统中细胞增殖、核内复制和分化的关键调节因子。在目的1中,将使用功能丧失方法来研究CDKN 1C参与人TS细胞分化为侵袭性EVT细胞谱系。我们将研究CDKN 1C影响的结构,转录组和功能过程。在目的2中,我们利用功能丧失的大鼠模型来研究CDKN 1C在胎盘形成的生理背景中的作用。该项目将在Michael J Soares博士和杰出生物医学科学家指导团队的指导下,在堪萨斯大学医学中心(KUMC)完成。制定了一项培训计划,以促进发展必要的技术专业知识和批判性思维技能,以设计和执行有效解决有意义的生物学问题的实验。Soares实验室,生殖和围产期研究所以及KUMC病理学和实验室医学系代表了一个丰富的科学环境,将提供优秀的研究生培训和研究机会,以获得对浸润性滋养层细胞谱系的调节和子宫-胎盘界面的建立的新见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Regan Leigh Scott其他文献
Regan Leigh Scott的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Regan Leigh Scott', 18)}}的其他基金
相似海外基金
NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
- 批准号:
2335999 - 财政年份:2024
- 资助金额:
$ 3.63万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411529 - 财政年份:2024
- 资助金额:
$ 3.63万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411530 - 财政年份:2024
- 资助金额:
$ 3.63万 - 项目类别:
Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412551 - 财政年份:2024
- 资助金额:
$ 3.63万 - 项目类别:
Standard Grant
Elucidating mechanisms of biological hydrogen conversion through model metalloenzymes
通过模型金属酶阐明生物氢转化机制
- 批准号:
2419343 - 财政年份:2024
- 资助金额:
$ 3.63万 - 项目类别:
Standard Grant
Collaborative Research: The Interplay of Water Condensation and Fungal Growth on Biological Surfaces
合作研究:水凝结与生物表面真菌生长的相互作用
- 批准号:
2401507 - 财政年份:2024
- 资助金额:
$ 3.63万 - 项目类别:
Standard Grant
DESIGN: Driving Culture Change in a Federation of Biological Societies via Cohort-Based Early-Career Leaders
设计:通过基于队列的早期职业领袖推动生物协会联盟的文化变革
- 批准号:
2334679 - 财政年份:2024
- 资助金额:
$ 3.63万 - 项目类别:
Standard Grant
REU Site: Modeling the Dynamics of Biological Systems
REU 网站:生物系统动力学建模
- 批准号:
2243955 - 财政年份:2024
- 资助金额:
$ 3.63万 - 项目类别:
Standard Grant
Defining the biological boundaries to sustain extant life on Mars
定义维持火星现存生命的生物边界
- 批准号:
DP240102658 - 财政年份:2024
- 资助金额:
$ 3.63万 - 项目类别:
Discovery Projects
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
- 批准号:
EP/Y036654/1 - 财政年份:2024
- 资助金额:
$ 3.63万 - 项目类别:
Research Grant