Dynamics of HIV Core Interactions
HIV核心相互作用的动态
基本信息
- 批准号:10650881
- 负责人:
- 金额:$ 117.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-22 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:Antiviral AgentsAvidityBehaviorBindingBinding ProteinsBinding SitesBiochemistryCapsidCapsid ProteinsCaringCell NucleusCellsComplexComputing MethodologiesCoupledCryoelectron MicroscopyCytoplasmDataDependenceDevelopmentDrug IndustryDrug TargetingDrug resistanceEnsureEnvironmentFoundationsFutureGlycineGoalsHIVHIV-1HydrophobicityInfectionKnowledgeLabelLeadMediatingMolecularMolecular BiologyNuclearNuclear ImportNuclear PoreNuclear Pore ComplexOutcomePatientsPeptidesPersonsPharmaceutical ChemistryPhase III Clinical TrialsPhenylalaninePhosphotransferasesPreventionProductivityProteinsProteomicsRegulatory PathwayResearchResistanceResistance profileRouteShapesSiteStructureSurfaceValidationVariantViralViral Drug ResistanceVirusVirus-like particleX-Ray Crystallographyactivation-induced cytidine deaminasebasebiophysical techniquescofactorexperiencefrontierimprovedin silicoinhibitorinnovationinsightlive cell microscopymolecular modelingmultidisciplinarynext generationnovelnovel therapeuticsprotein protein interactionresistance mechanismscreeningsmall moleculesmall molecule inhibitorstructural biologystructural determinantstargeted treatmenttherapeutic targetvirologyvirus corevirus host interaction
项目摘要
ABSTRACT, PROJECT 1
The overarching goals of the proposed studies are to i) elucidate dynamic, multifaceted interplay between
HIV-1 and host cell that regulates infection and ii) define the virus-host interactions as therapeutic targets.
The post-fusion journey of HIV-1 across the cytoplasm and via nuclear pore complex (NPC) is regulated by
dynamic interactions of the conically shaped virus capsid shell with variety host proteins that either aid
(dependency factors) or inhibit (restriction factors) infection. However, full identity and definitions of
mechanisms of action of the cellular binding partners of HIV-1 capsid remain largely unknown. Furthermore,
it is not clear how HIV-1 has evolved so that its capsid shell can bind selectively to diverse and seemingly
unrelated regulatory host proteins that dictate the outcome of infection. In Aim 1, we will discover and
characterize novel, dynamic interactions between HIV-1 capsid and host cell during virus ingress.
Specifically, our efforts will focus on uncovering previously unrecognized, dynamic networks of cellular
proteins that regulate HIV-1’s journey across the cytoplasm and through the NPC. Furthermore, we will
elucidate structural determinants for selective and avid binding of these proteins to HIV-1 capsid. The
hydrophobic capsid pocket, which engages several HIV-1 host dependency factors, has been successfully
targeted by small molecule inhibitors. However, a relatively low barrier to resistance to current capsid
targeting antivirals is a serious concern. In Aim 2, we will characterize interactions of existing and novel small
molecule inhibitors with distinct sites on HIV-1 capsid. Specifically, we will define how known HIV-1 capsid
inhibitors influence a dynamic structure of the conical HIV-1 capsid shell. Moreover, we will discover novel
small molecules that bind at distinct sites on HIV-1 capsid and retain activity against viral variants resistant
to current inhibitors. To accomplish above two aims we have assembled a highly collaborative B-HIVE team
with complementary, multidisciplinary expertise in cryo-ET, cryo-EM, X-ray crystallography, HDX-MS, native
MS, molecular modeling, live cell microscopy, virology, molecular biology, biochemistry, and medicinal
chemistry. Our research will generate unprecedented insight into virus-host interactions that regulate HIV-
1’s journey during the virus ingress and define these interactions as the principal therapeutic target.
Moreover, our structural and mechanistic characterization of multiple, distinct small molecule binding sites
on the conical capsid surface will provide powerful means for ongoing efforts in pharmaceutical industry to
rationally develop next generation of long-acting capsid inhibitors with enhanced barrier to resistance to
transform care of the people living with HIV-1.
摘要,项目1
拟议研究的总体目标是:1)阐明动态的、多方面的相互作用
HIV-1和调节感染的宿主细胞以及ii)将病毒与宿主的相互作用定义为治疗靶点。
HIV-1融合后穿过细胞质并通过核孔复合体(NPC)的旅程受
锥形病毒衣壳与多种宿主蛋白的动态相互作用
(依赖因素)或抑制(限制因素)感染。然而,完整的身份和定义
HIV-1衣壳的细胞结合伙伴的作用机制在很大程度上仍不清楚。此外,
目前尚不清楚HIV-1是如何进化的,以至于它的衣壳可以选择性地与不同的和表面上看起来
决定感染结果的无关的调节宿主蛋白。在目标1中,我们将发现和
描述HIV-1衣壳和宿主细胞在病毒入侵过程中的新的、动态的相互作用。
具体地说,我们的努力将集中在揭开以前未被识别的、动态的蜂窝网络
调节HIV-1的蛋白质‘S穿过细胞质,通过鼻咽癌。此外,我们还将
阐明这些蛋白与HIV-1衣壳选择性和亲和性结合的结构决定因素。这个
与多种HIV-1宿主依赖因子结合的疏水性衣壳口袋已经成功
以小分子抑制剂为靶点。然而,相对较低的抵抗电流衣壳的障碍
以抗病毒药物为目标是一个严重的问题。在目标2中,我们将描述现有的和新的小型
HIV-1衣壳上具有不同位点的分子抑制剂。具体地说,我们将定义已知的HIV-1衣壳
抑制剂影响锥形HIV-1衣壳的动态结构。此外,我们将发现新奇的
小分子结合在HIV-1衣壳上的不同位置,并保持对耐药病毒变体的活性
到目前的抑制剂。为了实现上述两个目标,我们组建了一个高度协作的B-HIVE团队
在冷冻-ET、冷冻-EM、X射线结晶学、HDX-MS、Native方面拥有互补的多学科专业知识
MS、分子建模、活细胞显微镜、病毒学、分子生物学、生物化学和医学
化学反应。我们的研究将对调节HIV的病毒-宿主相互作用产生前所未有的洞察力-
1‘S在病毒入侵期间的旅程,并将这些相互作用确定为主要的治疗靶点。
此外,我们对多个不同的小分子结合位点的结构和机理表征
将为制药行业正在进行的努力提供强有力的手段
合理开发新一代长效衣壳蛋白抑制剂
改变对HIV-1感染者的护理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stefan G Sarafianos其他文献
Biochemical mechanism of clinical resistance to rilpivirine
- DOI:
10.1186/1471-2334-12-s1-p94 - 发表时间:
2012-05-04 - 期刊:
- 影响因子:3.000
- 作者:
Kamalendra Singh;Devendra K Rai;Bechan Sharma;Eleftherios Michailidis;Emily M Ryan;Kayla B Matzek;Maxwell D Leslie;Ariel N Hagedorn;Hong-Tao Xu;Mark A Wainberg;Bruno Marchand;Stefan G Sarafianos - 通讯作者:
Stefan G Sarafianos
The Combination of 4'-Ethynyl-2-Fluoro-2'-Deoxyadenosine with Rilpivirine Shows Synergistic Anti-HIV-1 Activ- ity In Vitro
4-乙炔基-2-氟-2-脱氧腺苷与利匹韦林的组合在体外显示出协同抗 HIV-1 活性
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Atsuko Hachiya;Bruno Marchand;Eleftherios Michailidis;Eiichi N Kodama;Michael A Parni- ak;Hiroaki Mitsuya;Shinichi Oka;Stefan G Sarafianos - 通讯作者:
Stefan G Sarafianos
Stefan G Sarafianos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stefan G Sarafianos', 18)}}的其他基金
Discovery of SARS-CoV-2 antivirals using a replicon assay
使用复制子测定发现 SARS-CoV-2 抗病毒药物
- 批准号:
10522048 - 财政年份:2022
- 资助金额:
$ 117.14万 - 项目类别:
Behavior of HIV in Viral Environments (B-HIVE)
HIV 在病毒环境中的行为 (B-HIVE)
- 批准号:
10650864 - 财政年份:2022
- 资助金额:
$ 117.14万 - 项目类别:
Discovery of SARS-CoV-2 antivirals using a replicon assay
使用复制子测定发现 SARS-CoV-2 抗病毒药物
- 批准号:
10673119 - 财政年份:2022
- 资助金额:
$ 117.14万 - 项目类别:
Behavior of HIV in Viral Environments (B-HIVE)
HIV 在病毒环境中的行为 (B-HIVE)
- 批准号:
10508443 - 财政年份:2022
- 资助金额:
$ 117.14万 - 项目类别:
Taking aim at HBV eradication using novel NRTIs and Capsid effectors
使用新型 NRTI 和衣壳效应物消灭 HBV
- 批准号:
9918244 - 财政年份:2017
- 资助金额:
$ 117.14万 - 项目类别:
Ultrapotent Inhibitors of Wild-type and Multi-drug Resistant HIV
野生型和多重耐药艾滋病毒的超强抑制剂
- 批准号:
9605989 - 财政年份:2017
- 资助金额:
$ 117.14万 - 项目类别:
Taking aim at HBV eradication using novel NRTIs and Capsid effectors
使用新型 NRTI 和衣壳效应物消灭 HBV
- 批准号:
9605893 - 财政年份:2017
- 资助金额:
$ 117.14万 - 项目类别:
Reverse Transcriptase Multi-Class Drug Resistance and Rilpivirine Susceptibility in Diverse HIV-1 Subtypes
不同 HIV-1 亚型中的逆转录酶多类耐药性和利匹韦林敏感性
- 批准号:
9140626 - 财政年份:2016
- 资助金额:
$ 117.14万 - 项目类别:
Development of HIV capsid-targeting antivirals that affect immune response by modulating capsid stability and have improved resistance profiles
开发 HIV 衣壳靶向抗病毒药物,通过调节衣壳稳定性影响免疫反应并改善耐药性
- 批准号:
10437037 - 财政年份:2016
- 资助金额:
$ 117.14万 - 项目类别:
相似海外基金
Avidityに着目した食物経口免疫療法の出口戦略
食物口服免疫疗法的退出策略以亲和力为重点
- 批准号:
24K19255 - 财政年份:2024
- 资助金额:
$ 117.14万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Modulating Fibrinolysis Dynamics by Leveraging Multivalent Avidity to Control Enzyme Activity
通过利用多价亲和力控制酶活性来调节纤维蛋白溶解动力学
- 批准号:
10635496 - 财政年份:2023
- 资助金额:
$ 117.14万 - 项目类别:
Antibody avidity maturation as index for Immune resilience against SARS-CoV-2
抗体亲合力成熟作为针对 SARS-CoV-2 免疫恢复的指标
- 批准号:
22K15927 - 财政年份:2022
- 资助金额:
$ 117.14万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A novel DNA vaccine that delivers long lasting immunity by stimulating high avidity CD8 T cells and strong neutralising antibodies
一种新型 DNA 疫苗,通过刺激高亲和力 CD8 T 细胞和强中和抗体来提供持久的免疫力
- 批准号:
73437 - 财政年份:2020
- 资助金额:
$ 117.14万 - 项目类别:
Collaborative R&D
RAPID: Effect of Avidity on Association of Fusion Inhibitory Peptides with the HRN Domain of SARS-CoV-2 Spike Protein
RAPID:亲合力对融合抑制肽与 SARS-CoV-2 刺突蛋白 HRN 结构域关联的影响
- 批准号:
2031167 - 财政年份:2020
- 资助金额:
$ 117.14万 - 项目类别:
Standard Grant
An acoustofluidic avidity cytometer for massive parallel profiling single autoreactive T cell in autoimmune disease
用于大规模平行分析自身免疫性疾病中单个自身反应性 T 细胞的声流控亲和细胞仪
- 批准号:
10002377 - 财政年份:2020
- 资助金额:
$ 117.14万 - 项目类别:
The effect of oral immunotherapy on class switching and change in avidity of allergen-specific immunoglobulin
口服免疫疗法对类别转换和过敏原特异性免疫球蛋白亲合力变化的影响
- 批准号:
16K19648 - 财政年份:2016
- 资助金额:
$ 117.14万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
UNS:Thermal control of avidity for separation of biologicals
UNS:生物制品分离亲合力的热控制
- 批准号:
1511227 - 财政年份:2015
- 资助金额:
$ 117.14万 - 项目类别:
Standard Grant














{{item.name}}会员




