Dynamics of HIV Core Interactions
HIV核心相互作用的动态
基本信息
- 批准号:10508450
- 负责人:
- 金额:$ 122.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-22 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAntiviral AgentsAvidityBehaviorBindingBinding ProteinsBinding SitesBiochemistryCapsidCapsid ProteinsCaringCell NucleusCellsComplexComputing MethodologiesCoupledCryoelectron MicroscopyCytoplasmDataDependenceDevelopmentDrug IndustryDrug TargetingDrug resistanceEnsureEnvironmentFoundationsFutureGlycineGoalsHIVHIV-1HydrophobicityInfectionKnowledgeLabelLeadLightMediatingMolecularMolecular BiologyNuclearNuclear ImportNuclear PoreNuclear Pore ComplexOutcomePatientsPeptidesPersonsPharmaceutical ChemistryPhase III Clinical TrialsPhenylalaninePhosphotransferasesPreventionProteinsProteomicsRegulatory PathwayResearchResistanceResistance profileRoentgen RaysRouteSiteStructureSurfaceValidationVariantViralViral Drug ResistanceVirusVirus-like particleX-Ray Crystallographyactivation-induced cytidine deaminasebasebiophysical techniquescofactorexperiencefrontierimprovedin silicoinhibitorinnovationinsightlive cell microscopymolecular modelingmultidisciplinarynext generationnovelnovel therapeuticsprotein protein interactionresistance mechanismscreeningsmall moleculesmall molecule inhibitorstructural biologytargeted treatmenttherapeutic targetviral resistancevirologyvirus corevirus host interaction
项目摘要
ABSTRACT, PROJECT 1
The overarching goals of the proposed studies are to i) elucidate dynamic, multifaceted interplay between
HIV-1 and host cell that regulates infection and ii) define the virus-host interactions as therapeutic targets.
The post-fusion journey of HIV-1 across the cytoplasm and via nuclear pore complex (NPC) is regulated by
dynamic interactions of the conically shaped virus capsid shell with variety host proteins that either aid
(dependency factors) or inhibit (restriction factors) infection. However, full identity and definitions of
mechanisms of action of the cellular binding partners of HIV-1 capsid remain largely unknown. Furthermore,
it is not clear how HIV-1 has evolved so that its capsid shell can bind selectively to diverse and seemingly
unrelated regulatory host proteins that dictate the outcome of infection. In Aim 1, we will discover and
characterize novel, dynamic interactions between HIV-1 capsid and host cell during virus ingress.
Specifically, our efforts will focus on uncovering previously unrecognized, dynamic networks of cellular
proteins that regulate HIV-1’s journey across the cytoplasm and through the NPC. Furthermore, we will
elucidate structural determinants for selective and avid binding of these proteins to HIV-1 capsid. The
hydrophobic capsid pocket, which engages several HIV-1 host dependency factors, has been successfully
targeted by small molecule inhibitors. However, a relatively low barrier to resistance to current capsid
targeting antivirals is a serious concern. In Aim 2, we will characterize interactions of existing and novel small
molecule inhibitors with distinct sites on HIV-1 capsid. Specifically, we will define how known HIV-1 capsid
inhibitors influence a dynamic structure of the conical HIV-1 capsid shell. Moreover, we will discover novel
small molecules that bind at distinct sites on HIV-1 capsid and retain activity against viral variants resistant
to current inhibitors. To accomplish above two aims we have assembled a highly collaborative B-HIVE team
with complementary, multidisciplinary expertise in cryo-ET, cryo-EM, X-ray crystallography, HDX-MS, native
MS, molecular modeling, live cell microscopy, virology, molecular biology, biochemistry, and medicinal
chemistry. Our research will generate unprecedented insight into virus-host interactions that regulate HIV-
1’s journey during the virus ingress and define these interactions as the principal therapeutic target.
Moreover, our structural and mechanistic characterization of multiple, distinct small molecule binding sites
on the conical capsid surface will provide powerful means for ongoing efforts in pharmaceutical industry to
rationally develop next generation of long-acting capsid inhibitors with enhanced barrier to resistance to
transform care of the people living with HIV-1.
摘要,项目1
拟议研究的总体目标是:i)阐明以下方面之间动态的、多方面的相互作用:
HIV-1和调节感染的宿主细胞,以及ii)将病毒-宿主相互作用定义为治疗靶点。
HIV-1通过细胞质和核孔复合物(NPC)的融合后旅程由以下调节:
锥形病毒衣壳壳与各种宿主蛋白质的动态相互作用,
(依赖因素)或抑制(限制因素)感染。然而,完整的身份和定义
HIV-1衣壳的细胞结合配偶体的作用机制仍然是未知的。此外,委员会认为,
目前还不清楚HIV-1是如何进化的,以至于它的衣壳可以选择性地结合多种表面上看起来
决定感染结果的无关调节宿主蛋白。在目标1中,我们将发现和
表征病毒侵入期间HIV-1衣壳与宿主细胞之间的新型动态相互作用。
具体来说,我们的努力将集中在发现以前未被认识到的,动态的蜂窝网络,
调节HIV-1穿越细胞质和NPC的蛋白质。此外,我们将
阐明这些蛋白质与HIV-1衣壳选择性和亲和性结合的结构决定因素。的
与几种HIV-1宿主依赖性因子结合的疏水衣壳口袋已经成功地被
被小分子抑制剂靶向。然而,对当前衣壳的抗性的相对低的屏障
以抗病毒药物为目标是一个严重问题。在目标2中,我们将描述现有的和新的小分子之间的相互作用。
在HIV-1衣壳上具有不同位点的分子抑制剂。具体来说,我们将定义已知的HIV-1衣壳蛋白
抑制剂影响锥形HIV-1衣壳壳的动态结构。此外,我们将发现新的
在HIV-1衣壳上不同位点结合并保留抗病毒变异体活性的小分子
目前的抑制剂。为了实现上述两个目标,我们组建了一个高度协作的B-HIVE团队
在cryo-ET,cryo-EM,X射线晶体学,HDX-MS,native
MS,分子建模,活细胞显微镜,病毒学,分子生物学,生物化学和医学
化学.我们的研究将对调节艾滋病毒的病毒-宿主相互作用产生前所未有的洞察力-
1的旅程在病毒入侵和定义这些相互作用作为主要的治疗目标。
此外,我们对多个不同的小分子结合位点的结构和机制表征,
将为制药工业的持续努力提供强有力的手段,
合理开发下一代长效衣壳抑制剂,增强对
改变对HIV-1感染者的护理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stefan G Sarafianos其他文献
Biochemical mechanism of clinical resistance to rilpivirine
- DOI:
10.1186/1471-2334-12-s1-p94 - 发表时间:
2012-05-04 - 期刊:
- 影响因子:3.000
- 作者:
Kamalendra Singh;Devendra K Rai;Bechan Sharma;Eleftherios Michailidis;Emily M Ryan;Kayla B Matzek;Maxwell D Leslie;Ariel N Hagedorn;Hong-Tao Xu;Mark A Wainberg;Bruno Marchand;Stefan G Sarafianos - 通讯作者:
Stefan G Sarafianos
The Combination of 4'-Ethynyl-2-Fluoro-2'-Deoxyadenosine with Rilpivirine Shows Synergistic Anti-HIV-1 Activ- ity In Vitro
4-乙炔基-2-氟-2-脱氧腺苷与利匹韦林的组合在体外显示出协同抗 HIV-1 活性
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Atsuko Hachiya;Bruno Marchand;Eleftherios Michailidis;Eiichi N Kodama;Michael A Parni- ak;Hiroaki Mitsuya;Shinichi Oka;Stefan G Sarafianos - 通讯作者:
Stefan G Sarafianos
Stefan G Sarafianos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stefan G Sarafianos', 18)}}的其他基金
Discovery of SARS-CoV-2 antivirals using a replicon assay
使用复制子测定发现 SARS-CoV-2 抗病毒药物
- 批准号:
10522048 - 财政年份:2022
- 资助金额:
$ 122.86万 - 项目类别:
Discovery of SARS-CoV-2 antivirals using a replicon assay
使用复制子测定发现 SARS-CoV-2 抗病毒药物
- 批准号:
10673119 - 财政年份:2022
- 资助金额:
$ 122.86万 - 项目类别:
Behavior of HIV in Viral Environments (B-HIVE)
HIV 在病毒环境中的行为 (B-HIVE)
- 批准号:
10650864 - 财政年份:2022
- 资助金额:
$ 122.86万 - 项目类别:
Behavior of HIV in Viral Environments (B-HIVE)
HIV 在病毒环境中的行为 (B-HIVE)
- 批准号:
10508443 - 财政年份:2022
- 资助金额:
$ 122.86万 - 项目类别:
Taking aim at HBV eradication using novel NRTIs and Capsid effectors
使用新型 NRTI 和衣壳效应物消灭 HBV
- 批准号:
9918244 - 财政年份:2017
- 资助金额:
$ 122.86万 - 项目类别:
Ultrapotent Inhibitors of Wild-type and Multi-drug Resistant HIV
野生型和多重耐药艾滋病毒的超强抑制剂
- 批准号:
9605989 - 财政年份:2017
- 资助金额:
$ 122.86万 - 项目类别:
Taking aim at HBV eradication using novel NRTIs and Capsid effectors
使用新型 NRTI 和衣壳效应物消灭 HBV
- 批准号:
9605893 - 财政年份:2017
- 资助金额:
$ 122.86万 - 项目类别:
Reverse Transcriptase Multi-Class Drug Resistance and Rilpivirine Susceptibility in Diverse HIV-1 Subtypes
不同 HIV-1 亚型中的逆转录酶多类耐药性和利匹韦林敏感性
- 批准号:
9140626 - 财政年份:2016
- 资助金额:
$ 122.86万 - 项目类别:
Development of HIV capsid-targeting antivirals that affect immune response by modulating capsid stability and have improved resistance profiles
开发 HIV 衣壳靶向抗病毒药物,通过调节衣壳稳定性影响免疫反应并改善耐药性
- 批准号:
10437037 - 财政年份:2016
- 资助金额:
$ 122.86万 - 项目类别:
相似海外基金
Development of a new generation of antiviral agents that are effective against drug-resistant viruses and prevent serious illness and sequelae.
开发新一代抗病毒药物,可有效对抗耐药病毒并预防严重疾病和后遗症。
- 批准号:
23K18186 - 财政年份:2023
- 资助金额:
$ 122.86万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
A versatile structure-based therapeutic platform for development of VHH-based antitoxin and antiviral agents
一个多功能的基于结构的治疗平台,用于开发基于 VHH 的抗毒素和抗病毒药物
- 批准号:
10560883 - 财政年份:2023
- 资助金额:
$ 122.86万 - 项目类别:
Genetically encoded bicyclic peptide libraries for the discoveryof novel antiviral agents
用于发现新型抗病毒药物的基因编码双环肽库
- 批准号:
10730692 - 财政年份:2021
- 资助金额:
$ 122.86万 - 项目类别:
Design and synthesis of nucleosides to develop antiviral agents and oligonucleotide therapeutics
设计和合成核苷以开发抗病毒药物和寡核苷酸疗法
- 批准号:
21K06459 - 财政年份:2021
- 资助金额:
$ 122.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetically encoded bicyclic peptide libraries for the discoveryof novel antiviral agents
用于发现新型抗病毒药物的基因编码双环肽库
- 批准号:
10189880 - 财政年份:2021
- 资助金额:
$ 122.86万 - 项目类别:
Computer-aided identification and synthesis of novel broad-spectrum antiviral agents
新型广谱抗病毒药物的计算机辅助鉴定和合成
- 批准号:
2404261 - 财政年份:2020
- 资助金额:
$ 122.86万 - 项目类别:
Studentship
Develop broad-spectrum antiviral agents against COVID-19 based on innate immune response to SARS-CoV-2 infection
基于对 SARS-CoV-2 感染的先天免疫反应,开发针对 COVID-19 的广谱抗病毒药物
- 批准号:
10222540 - 财政年份:2020
- 资助金额:
$ 122.86万 - 项目类别:
Develop broad-spectrum antiviral agents against COVID-19 based on innate immune response to SARS-CoV-2 infection
基于对 SARS-CoV-2 感染的先天免疫反应,开发针对 COVID-19 的广谱抗病毒药物
- 批准号:
10669717 - 财政年份:2020
- 资助金额:
$ 122.86万 - 项目类别:
Association between sedentary lifestyle and liver cancer development in hepatitis C patients treated with direct-acting antiviral agents
接受直接抗病毒药物治疗的丙型肝炎患者久坐的生活方式与肝癌发展之间的关系
- 批准号:
20K10713 - 财政年份:2020
- 资助金额:
$ 122.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Develop broad-spectrum antiviral agents against COVID-19 based on innate immune response to SARS-CoV-2 infection
基于对 SARS-CoV-2 感染的先天免疫反应,开发针对 COVID-19 的广谱抗病毒药物
- 批准号:
10174522 - 财政年份:2020
- 资助金额:
$ 122.86万 - 项目类别:














{{item.name}}会员




