Fragment-to-lead and target validation

片段到先导和目标验证

基本信息

  • 批准号:
    10513873
  • 负责人:
  • 金额:
    $ 847.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-16 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

The discovery of an antiviral therapeutic requires a target that is robust to mutations, and suitable chemical matter that modulates the target. The Fragment-to-Lead and Target Validation project sits at the crucial interface between target validation and chemical lead generation. We aim to validate biological hypotheses behind target selection and produce lead molecules for downstream therapeutic development, producing leads against 9 antiviral targets. By tightly integrating the unique capabilities of extremely high-throughput X-ray crystallography at Diamond Light Source, this project leverages recent advances in artificial intelligence and machine learning (Al/ML) and exascale computing free energy calculations to rapidly generate novel potent lead compounds able to overcome resistance from initial X-ray fragment screens. This project builds on the successful COVID Moonshot initiative, which executed a rapid fragment-to-lead campaign against SARS-CoV-2 main protease - starting from fragment screen, a lead compound with IC50 = 140 nM was discovered in <6 months and <400 compounds made. In the first stage of a hit-to-lead campaign, we will use machine learning to learn pharmacophore features from high throughput fragment screen readout, and use these patterns to search for potent hits from virtual, synthetically accessible chemical space. The goal is to arrive at chemical matter which engages the viral protein with antiviral activity, which in turn enables experiments that validate the target. Working with Project 1 (Antiviral Targeting to Suppress Resistance), potent hits will be used to validate biological hypotheses of target engagement, and Deep Mutational Scanning and serial passaging will be used to evaluate the barrier to resistance and the mutations that give rise to resistance. These insights will be used in the iterative medicinal chemistry design process, in selecting chemical series with less resistance potential and focusing on expanding into vectors that target mutationally robust residues. In the second stage of the hit-to-lead campaign, we will build on the wealth of structural and bioactivity data generated in the first stage and use machine learning, alchemical free energy calculations, and high throughput nanomole chemistry to rapidly evaluate and synthesize analogues which expand into promising vectors. The goal of this phase is to arrive at: (i) potent inhibitor in biochemical assays with IC50<500 nM; (ii) inhibition in cellular antiviral assays with EC50<3μM and cytotoxicity CC50>50 μM; and (iii) developable Tier 1 ADME and physicochemical properties: clog P<4, kinetic solubility > 50 μM, rat and human microsomal stability Clint<50, MDCK-LE permeability Papp>1x108cm/s. These leads are inputs to Lead Optimization (Project 5), which will focus on further improvements in potency, ADMET and in vivo pharmacokinetics.
抗病毒治疗剂的发现需要对突变具有鲁棒性的靶标,以及合适的化学物质。 调制目标的物质。片段到铅和目标验证项目位于关键 目标验证和化学铅生成之间的接口。我们的目标是验证生物学假设 为下游治疗开发提供先导分子, 针对9个抗病毒靶点。通过紧密集成极高通量X射线的独特功能, 钻石光源的晶体学,该项目利用了人工智能的最新进展, 机器学习(Al/ML)和exascale计算自由能计算,以快速生成新的有效的 能够克服来自初始X射线碎片筛选的阻力的先导化合物。该项目建立在 成功的COVID Moonshot计划,该计划执行了一项快速的碎片到铅运动, SARS-CoV-2主要蛋白酶-从片段筛选开始, 在不到6个月的时间里发现了不到400种化合物。在一个点击率领先运动的第一阶段,我们将使用 机器学习从高通量片段筛选读数中学习药效团特征,并使用 这些模式从虚拟的、可合成的化学空间中搜索有效的命中。目标是 得到一种化学物质,它使病毒蛋白具有抗病毒活性, 验证目标的实验。与项目1(抗病毒靶向抑制耐药性)合作, 有效的命中将用于验证目标接合的生物学假设,以及深度突变扫描 并将使用连续传代来评估耐药性屏障和引起 阻力这些见解将用于迭代药物化学设计过程, 具有较小抗性潜力的化学品系列,重点是扩展到突变靶向载体 鲁棒残留物。在“点击领先”运动的第二阶段,我们将建立在结构和 在第一阶段生成的生物活性数据,并使用机器学习,炼金术自由能计算, 高通量纳米分子化学,以快速评估和合成类似物, 有前途的载体。该阶段的目标是达到:(i)在生物化学测定中具有IC 50 <500的有效抑制剂 nM;(ii)在细胞抗病毒试验中的抑制作用,EC 50 <3μM,细胞毒性CC 50>50 μM;和(iii)可开发 第1层ADME和理化性质:阻塞P<4,动力学溶解度> 50 μM,大鼠和人微粒体 稳定性克林特<50,MDCK-LE渗透率Papp> 1 × 108 cm/s。这些潜在客户是潜在客户优化的输入 (项目5),将重点放在进一步改善效力,ADMET和体内药代动力学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Damon Chodera其他文献

John Damon Chodera的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Damon Chodera', 18)}}的其他基金

AI-driven Structure-enabled Antiviral Platform (ASAP)
人工智能驱动的结构支持抗病毒平台 (ASAP)
  • 批准号:
    10513865
  • 财政年份:
    2022
  • 资助金额:
    $ 847.72万
  • 项目类别:
Data Infrastructure Core
数据基础设施核心
  • 批准号:
    10513870
  • 财政年份:
    2022
  • 资助金额:
    $ 847.72万
  • 项目类别:
Antiviral Efficacy and Resistance Core
抗病毒功效和耐药性核心
  • 批准号:
    10513869
  • 财政年份:
    2022
  • 资助金额:
    $ 847.72万
  • 项目类别:
Target enablement
目标实现
  • 批准号:
    10513872
  • 财政年份:
    2022
  • 资助金额:
    $ 847.72万
  • 项目类别:
Antiviral targeting to suppress drug resistance
抗病毒靶向抑制耐药性
  • 批准号:
    10513871
  • 财政年份:
    2022
  • 资助金额:
    $ 847.72万
  • 项目类别:
Biochemical Assay Core
生化检测核心
  • 批准号:
    10513868
  • 财政年份:
    2022
  • 资助金额:
    $ 847.72万
  • 项目类别:
Covalent targeting strategies
共价靶向策略
  • 批准号:
    10513874
  • 财政年份:
    2022
  • 资助金额:
    $ 847.72万
  • 项目类别:
Lead optimization
潜在客户优化
  • 批准号:
    10513875
  • 财政年份:
    2022
  • 资助金额:
    $ 847.72万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10513866
  • 财政年份:
    2022
  • 资助金额:
    $ 847.72万
  • 项目类别:
Structural Biology Core
结构生物学核心
  • 批准号:
    10513867
  • 财政年份:
    2022
  • 资助金额:
    $ 847.72万
  • 项目类别:

相似海外基金

Studies of Pion and Kaon Structure and Validation of the Exclusive Reaction Mechanism
π介子和K介子结构的研究及专属反应机理的验证
  • 批准号:
    2309976
  • 财政年份:
    2023
  • 资助金额:
    $ 847.72万
  • 项目类别:
    Standard Grant
Is tree having thick and dense crown vulnerable for global warming? Validation of a new hypothesis for inter-species variations in crown structure
树冠又厚又密的树木是否容易受到全球变暖的影响?
  • 批准号:
    21K19141
  • 财政年份:
    2021
  • 资助金额:
    $ 847.72万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Development, validation and assessment of an automated, topographic structure-function approach to the detection of glaucoma and its progression
开发、验证和评估用于检测青光眼及其进展的自动化拓扑结构功能方法
  • 批准号:
    10491042
  • 财政年份:
    2021
  • 资助金额:
    $ 847.72万
  • 项目类别:
Studies of Light Meson Structure and Validation of the Exclusive Reaction Mechanism
轻介子结构研究及专属反应机理验证
  • 批准号:
    2012430
  • 财政年份:
    2020
  • 资助金额:
    $ 847.72万
  • 项目类别:
    Continuing Grant
WiMo-Trans - Validation and further development of an impact model for describing the effects of modular product structure in manufacturing industry
WiMo-Trans - 验证和进一步开发影响模型,用于描述制造业中模块化产品结构的影响
  • 批准号:
    415579334
  • 财政年份:
    2019
  • 资助金额:
    $ 847.72万
  • 项目类别:
    Research Grants (Transfer Project)
Validation of the Heat and Moisture Transfer within Wooden Building Assemblies under Fire Exposure and its Mechanical Impact on the Building Structure
火灾暴露下木质建筑组件内的热量和水分传递及其对建筑结构的机械影响的验证
  • 批准号:
    19H00798
  • 财政年份:
    2019
  • 资助金额:
    $ 847.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Math Learning Disabilities among Young Adults in College: Structure, Identification, and Validation
大学年轻人的数学学习障碍:结构、识别和验证
  • 批准号:
    1760760
  • 财政年份:
    2018
  • 资助金额:
    $ 847.72万
  • 项目类别:
    Continuing Grant
Conception and Validation of a Numerical Model of an Aortic Shell Structure to Improve Prosthesis Compliance
用于提高假体顺应性的主动脉壳结构数值模型的构思和验证
  • 批准号:
    528792-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 847.72万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Development, Validation, and Application of Structure-based Tools for Computational Molecular Design
基于结构的计算分子设计工具的开发、验证和应用
  • 批准号:
    10455100
  • 财政年份:
    2018
  • 资助金额:
    $ 847.72万
  • 项目类别:
Development and validation of a method to determine the frequency- and temperature-dependent stiffness and damping properties of plastics for the structure-borne noise simulation more precisely using the example of the for the ultrasonic welding process r
开发和验证一种方法,以确定塑料的与频率和温度相关的刚度和阻尼特性,以使用超声波焊接工艺的示例更精确地进行结构噪声模拟
  • 批准号:
    398244070
  • 财政年份:
    2018
  • 资助金额:
    $ 847.72万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了